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Chapter 20
Blue Skies Above the Horizon

Ami M. Mamolo and Peter D. Taylor

Introduction

How can secondary teacher education approaches, ones that use abstract algebra as it might
be applied in secondary teaching situations, inform the way we think about connecting
abstract algebra to secondary mathematics, for secondary mathematics teachers?

This is the question we were asked to consider when framing our commentary to
the chapters included in this section of the volume, Connecting Abstract Algebra to
Secondary Mathematics, for Secondary Mathematics Teachers. As we discussed this
question, and how we might address it, we found ourselves posing further questions,
and we frame our commentary around those. Specifically, we will focus on the
following two broad questions:

1. Connections. In what ways does abstract algebra connect to secondary school
mathematics and how can we understand these connections in terms of teachers’
disciplinary knowledge?

2. Approaches. How can we then build on these connections to support the
development of teachers’ disciplinary knowledge?
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Connections

Each of the chapters presented in this section exemplifies ways in which abstract
algebra may be connected and applicable to secondary school mathematics teaching,
with a particular emphasis on connections amongst mathematical content and
practices. The authors present different perspectives for why they promote their
particular connections: (1) to make the work of teachers easier, (2) to enrich math-
ematical understanding for pupils, (3) to support teacher responses to contingency,
and (4) to highlight relationships amongst mathematical ideas. Somewhat implicit in
all of this are the authors’ underlying intentions for secondary school mathematical
experiences. We have our own views on this, and we articulate some of them here, to
help contextualize our discussion of the ideas raised within each chapter. As teacher
educators, the overarching goals we hold for secondary school mathematics inform
our priorities when structuring experiences for prospective secondary teachers. How
we support prospective teachers in developing practices that are in line with our
goals relates to our understanding of teachers’ disciplinary knowledge, and vice
versa. Our understanding of teachers’ disciplinary knowledge informs the support
we can give prospective teachers in developing practices that are in line with our
goals. Thus, our response to the question “in what ways does abstract algebra
connect to secondary mathematics and how can we understand these connections
in terms of teachers’ disciplinary knowledge?” is broken down into the following
subsections:

• Goals for secondary mathematics: Blue skies and feet on the ground
• Teachers’ disciplinary knowledge: A view of mathematical horizons
• Analyzing connections

Goals for Secondary Mathematics: Blue Skies and Feet
on the Ground

A detailed discussion of our goals for secondary mathematics would take us well
outside the limits of this chapter, so instead, we offer highlights. First and foremost,
our position is that secondary students should be engaging with meaningful,
relevant, interesting, and challenging activities and problems. We acknowledge
that this is a bit of a “blue sky” goal—many teachers only rarely are able to
tackle problems of that kind. Administrators, parents, and students can be reticent
toward approaches that diverge from established routines and practices, and too
often those practices rely on bite-sized exercises that reinforce rules, processes,
and calculations. Nevertheless, our blue sky goals are motivated by pragmatic
considerations––we want students to appreciate mathematics, its structure, its
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relevance, its beauty, and how it connects to their scholarly, professional, and
personal life trajectories. For this to work, their teachers must also have such an
appreciation.

There are challenges. Disparities continue to exist amongst mathematical prac-
tices engaged in at school and mathematical practices needed by mathematicians,
those that are applicable to various professions, and those that are valuable for
informed citizenry. Cuoco, in his introduction (Chap. 18), speaks of a career-long
personal agenda to find ways to close the (huge) gap between school mathematics
and mathematics as it is practiced by mathematics professionals. Boaler (2016) and
Taylor (2018) both declare that the examples we work with in class should be ones
that are of interest to a mathematician—and we interpret this broadly to include
various “types” of applied mathematicians. This view, and more general versions of
it, goes back a long way, for example, to Whitehead (1929) and Dewey (1934), both
of whom emphasized the quality of the student experience. This draws our focus
much more to doing rather than knowing. Or if you like, knowledge is wonderful,
provided you are doing something interesting with it, which is not always the case
in school mathematics.

Let us state an operational version of this. Whenever we, as teachers of
mathematics, meet with students at any level, we should bring, along with the
knowledge we are offering, an activity or problem that is interesting and that has
meaning in the students’ lives. Papert (1972) makes this point:

The important difference between the work of a child in an elementary mathematics class
and that of a mathematician is not in the subject matter (old fashioned numbers versus
groups or categories or whatever) but in the fact that the mathematician is creatively engaged
in the pursuit of a personally meaningful project. In this respect a child’s work in an art class
is often close to that of a grown-up artist (p. 249).

The analogy between mathematics and art is compelling to us, and we note
that several researchers have emphasized the creative and aesthetic character
of mathematics (e.g., Barabe & Proulx, 2017; Boaler, 2016; Gadanidis, Borba,
Hughes, & Lacerda, 2016; Raymond, 2018; Sinclair, 2006; Taylor, 2018). For us,
this reaches back to the theme of Dewey’s (1934) Art and Experience, that the
aesthetic experience is jointly constructed between painter and viewer, performer
and audience, that both are called to be artists in a shared experience. We imagine
a parallel ideal, where both teacher and student are called to be mathematicians
in a shared experience of doing interesting mathematics. To realize such an ideal,
teachers need to have the courage and the knowledge to be more independent in
how they interpret and enact curricula, so as to work with material that really
interests and excites them and their pupils. They need an appreciation for the nature
of mathematics, its structure, its relevance, its beauty. We see abstract algebra as
a wonderful context in which to foster such an appreciation, and one that has
important implications for teachers’ disciplinary knowledge.

http://dx.doi.org/10.1007/978-3-319-99214-3_18
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Teachers’ Disciplinary Knowledge: A View of Mathematical
Horizons

Mathematical knowledge required for teaching has been widely discussed, with
attention focusing on knowledge in teaching, for teaching, and of teachers (e.g.,
Adler & Ball, 2009; Ball, Thames, & Phelps, 2008; Davis & Simmt, 2006; and
many, many others). As part of their extensive work on teacher knowledge, Ball
and colleagues introduced the construct of Knowledge at the Mathematical Horizon
(KMH), which was described as knowledge which “engages those aspects of the
mathematics that . . . illuminate and confer a comprehensible sense of the larger
significance of what may be only partially revealed in the mathematics of the
moment” (Ball & Bass, 2009, p. 5). While there is no consensus on how to define
KMH, it has been characterized by key elements of a teachers’ mathematical knowl-
edge that extend beyond curricular content, such as, knowledge of mathematical
structures, practices, and values (Ball & Bass, 2009). Evidence suggests that KMH
is an integral part of teachers’ disciplinary knowledge, and it has been positively
linked to teachers’ abilities to respond in the moment to classroom interactions
(Fernandez & Figueiras, 2014; Jakobsen, Thames, Ribeiro, & Delaney, 2012; Zazkis
& Mamolo, 2011), to plan and extend lessons (Wasserman & Stockton, 2013), and
in anticipating and responding to student learning (Mamolo & Pali, 2014).

Our view of the horizon aligns with the perspective of Zazkis and Mamolo
(2011), who suggest that KMH is intimately related to a teacher’s focus of attention
and his or her ability to flexibly shift attention, such that relevant properties, gen-
eralities, or connections, which embed particular mathematical content in a greater
structure, are accessed in teaching situations. Specifically, KMH is conceptualized
as a teacher’s knowledge of the horizon of a mathematical object, and draws on
Husserl’s philosophical notions of inner and outer horizon (Follesdal, 2003). That
is, when an individual attends to an object, he or she will focus on particular features
of that object—e.g., if you think of a circle, your attention might be focused on its
size and shape—while other features of that same object will lie in the periphery—
e.g., the equation of that circle, or its position in space. These peripheral features, all
of which are specific to the object of thought, lie within the object’s inner horizon—
they are “aspects of an object that are not at the focus of attention, but that are also
intended” (Zazkis & Mamolo, 2011, p. 9). Further in the periphery are “features
which are not in themselves aspects of the object, but which are connected to the
world in which the object exists” (ibid, p. 9), and as such comprise the object’s
outer horizon. With respect to our circle, the outer horizon includes structures,
such as trigonometric identities, conics, and geodesics, as well as ways of working
mathematically with circles.

Metaphorically, knowledge of the horizon depends on our location in the terrain.
A high vista can offer a broad view of the terrain—where we’ve been, where
we can go, ways we can get there, and potential obstacles along the way. In
contrast, anyone who has ever been lost in the woods knows the challenges of
navigating your way without such a view. Zazkis and others have argued that
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Table 20.1 Interpreting components of KMH

KMH components (Ball &
Bass, 2009)

Our interpretation of
components

Connections to inner and
outer horizons

Mathematical environment
surrounding current
“location”

Knowledge of how the current
subject matter relates to
previously learned and future
concepts, within and across
specific grades

Is influenced by focus of
attention (inner horizon) and
understanding of the lay of
the land (outer horizon)

Major disciplinary ideas and
structures

Knowledge of the underlying
structural components of
mathematics, such as
connections between
seemingly disparate content

Structure embeds specific
content within the greater
mathematical world (outer
horizon)

Key mathematical practices Including conjecturing,
generalizing, and proving

Ways of engaging in specific
practices (inner horizon)
within a greater mathematical
world (outer horizon)

Core mathematical values
and sensibilities

Including precision,
axiomatic thinking, and
questioning conventions

Ways of being within the
greater mathematical world
(outer horizon)

studying advanced mathematics can help teachers acquire a broad view by providing
access to these “higher vistas.” Our conceptualization of KMH illustrates how
advanced mathematical knowledge can influence teachers’ view of the terrain
through a connection we make to the components of horizon knowledge introduced
by Ball and Bass (2009). Specifically, Ball and Bass (2009) describe four major
components of KMH: (1) a sense of the mathematical environment surrounding
the current “location” in instruction; (2) major disciplinary ideas and structures;
(3) key mathematical practices; and (4) core mathematical values and sensibilities.
These components connect to the notions of inner and outer horizons, as described
in Table 20.1. These connections speak most clearly to instances when the object
of thought corresponds to mathematical content (e.g., circles, functions), however
similar connections exist when the object of thought is more abstract (e.g., proving,
recursive thinking, axiomatic thinking). In particular, we observe that knowledge
of an object’s outer horizon can influence what about that object is in view and
what lies in the periphery (inner horizon). This, in turn, influences the view of the
mathematical landscape, which embeds that object within a greater mathematical
world (outer horizon), as well as provides a map for “instructional locations.”

Applying these ideas to examples from the chapters allowed us to analyze some
of the ways in which abstract algebra can be connected to, and is applicable for,
secondary mathematics teaching. We highlight three examples here—depicted in
Figs. 20.1, 20.2, and 20.3—and then discuss further connections in the following
subsection.
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Group structures

Inner 
horizon

Outer 
horizon

Fig. 20.1 Connecting examples of inverses via structures in the horizon

Group structures

Group Isomorphisms

Representations of functions

input-output, uniqueness

Relationship to isomorphisms

input-output, uniqueness
relations, mappings

Inner 
horizon

Outer 
horizon

Fig. 20.2 Shifting focus from representations to relationships via broadened horizons

Area (Δ) Area (Δ)

Ring structures

Outer 
horizon

Inner 
horizon

Fig. 20.3 Connecting Pythagorean triples with Heron triangles via structures in the horizon
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Figure 20.1 offers an example of how KMH embeds specific examples in a
broader context via knowledge of group theory. The example comes from Zazkis
and Marmur (Chap. 17), who noted that knowledge of group theory is helpful in
appreciating “reciprocal,” as a specific instance of “inverse,” as it draws attention
to the structural similarities of the two. This is in contrast with their observation
that many prospective secondary teachers view the concepts as distinct and context-
specific. The analysis in Fig. 20.1 focuses on the number 5−1, with some of its
intended features lying in the peripheral inner horizon, including, for example, that
5 is a rational non-zero number, its reciprocal exists, and if you multiply 5 by its
reciprocal, the product is 1. In the outer horizon are the group-theoretic structures
which embed this specific instance in a more general and abstract setting, including
the closure property of groups, and the existence of inverse and identity elements.
These structures overlap with the outer horizon of f−1 and form a pathway for
connecting the two examples. In the periphery or inner horizon of f−1, we have
depicted what we believe would be likely intended by secondary teachers, namely
that the function is a bijection which acts on real numbers.

Figure 20.2 also considers functions and illustrates how KMH can occasion
a shift in attention such that different properties of an object fall into view.
The example comes from Wasserman and Galarza (Chap. 16), who characterized
changes in secondary teachers’ portrayal and emphases of functions after their
engagement with the Function Module. Prior to the module, teachers emphasized
multiple representations of functions (e.g., equations, tables, graphs) and restricted
their examples to numerical ones. Figure 20.2 positions representations of functions
at the focus of attention, and includes, in the inner horizon, the restriction of f to
the set of real numbers and its “every input has a unique output” characterization.
The Function Module introduced group isomorphisms and seemed to broaden
teachers’ awareness of how to think about functions within a greater context. That
is, they drew on more abstract examples of functions, they positioned functions as
a special kind of more general relations, and they stopped attending to represen-
tations of functions, and started attending to relationships between functions and
isomorphisms. We highlight this shift in attention, but are careful not to place a
value-judgment on it. It is not clear from the chapter whether a shift in attention
from function representations to relationships with isomorphisms is a useful shift,
even if it is an applicable shift. The usefulness would depend on how the material
was enacted with students, and we return to this idea later on.

Our third example, depicted in Fig. 20.3, stems from Cuoco’s rich and interesting
exploration of Pythagorean triples and Heron triangles. In his Chap. 18, Cuoco
develops a method for solving “one of the oldest meta-problems [which] involves
the search for Pythagorean triples” (p. 385), and then modifies it to produce
Heron triangles. The method abstracts from the particulars of the meta-problem
to address it via ring theoretic structures, which are themselves at different levels
of abstraction. Cuoco introduces ring structures from Z[i] to address the search for
Pythagorean triples. Contextualizing the ring Z[i] in a more general and abstract
setting allows connections to be made to other contexts. This allows Cuoco to
construct the ring Q[α], whose structures are analogously applied in the search for

http://dx.doi.org/10.1007/978-3-319-99214-3_17
http://dx.doi.org/10.1007/978-3-319-99214-3_16
http://dx.doi.org/10.1007/978-3-319-99214-3_18
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Heron triangles. Figure 20.3 illustrates how KMH can forge links between different
areas (and grades) of curriculum, via knowledge of ring theory.

Analyzing Connections: Wherefore, Abstract Algebra?

In the preceding subsection we analyzed examples from the chapters through a
lens of KMH in order to illustrate how abstract algebra knowledge can inform a
teacher’s understanding of secondary school mathematics. It is worth questioning
whether other areas of advanced mathematics would be similarly applicable, and we
suggest that in many cases, more mathematics would not lead to better mathematics.
Framing the discussion in terms of KMH helped us articulate for ourselves what
in particular about abstract algebra makes it stand out in a crowded chest of
mathematical treasures. Zazkis and Marmur suggest that it is precisely the abstract
nature of algebraic structures which is so applicable: “While abstraction is regarded
as a source of difficulty, it nonetheless possesses the potential to make the algebraic
construct relevant and applicable for a large variety of concrete examples and
mathematical topics” (p. 365). More than that though, it is structure itself that really
stands out for us. It is the explicit attention to structure (e.g. of groups, fields,
rings) that is of central importance in the study of abstract algebra—we compare
and contrast structures, exemplify and extend them, investigate implications, push
boundaries, and play with relationships, all with a sort of directness and cohesion
that are not so clearly visible in other areas, such as real analysis.

In the language used to develop KMH, one could say that in abstract algebra,
major disciplinary structures become the focus of attention, and key mathematical
practices, values, and sensibilities are developed through engaging with these
structures. If clear connections to secondary school mathematics can be made (either
by or for the individual), then enriched understandings of the mathematical horizon
can emerge. Knowledge of abstract algebra can:

• Enrich an object’s outer horizon by linking that object to major disciplinary
structures and ways of working with them

• Broaden an object’s inner horizon by shedding light on previously unknown or
unacknowledged properties of the object

• Occasion a shift in attention such that different or more general properties of the
object come into view

The applicability of horizon knowledge in general and abstract algebra knowl-
edge in particular, depends on how an individual connects this knowledge to
teaching situations. We highlight some connections amongst abstract algebra con-
tent and secondary school content, as well as connections amongst abstract algebra
understanding and decision-making in teaching situations.
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Connections Amongst Abstract Algebra Content
and Secondary School Content

A quick review of select curricula shows some direct connections between abstract
algebra content and secondary content—vectors, their properties, and performing
operations on them are included in, for example, the US Common Core Standards
(2010), The National Curriculum in England (2014), the Australian Curriculum
(2012), and the Ontario Curriculum (2007), which is used in much of eastern
Canada (curricula for central, western, and northern Canada do not address vectors).
In looking for other content-specific connections, and given the prominence of
functions in various secondary mathematics curricula, it was not surprising to
find that three of the four chapters in this section identified ways that abstract
algebra could be applicable to working with functions. Wasserman and Galarza
identified binary operations and group isomorphisms as examples of functions,
and noted that working with binary operations and group isomorphisms could
foster “a broader understanding of function,” which could in turn “help exemplify
nuances within and boundaries around the idea of functions as more than merely
symbolic rules” (p. 341). Zazkis and Marmur looked at inverse functions and
seemingly invertible functions and noted that “an internalized recognition of the
existence of an algebraic structure of mathematical objects (including objects
outside the algebraic domain) may aid teachers in their thought process” (p. 373)
when clarifying student confusion or designing tasks. They also note that a group
theoretic understanding of secondary content “brings the discussion to a higher
level of abstraction, where different ideas exemplify the same structure” (p. 371).
Structural similarities between rings were exploited by Cuoco when considering
fitting functions to tables; his discussion of Newton’s Difference Formula and
Lagrange Interpolation highlights how the reformulation of problems with abstract
algebra structures can shed new light on familiar content. Group, ring, and field
structures were also applied to solving equations, number properties and operations,
and “meta-problems” involving the measures of triangles.

Connections Amongst Abstract Algebra Understanding
and Teaching Decisions

In considering different ways in which the understanding of abstract algebra may
connect to teaching situations, we restrict our attention to four aspects related to the
mathematical work of teaching:

• Planning includes such things as unit and lesson preparation, structuring of
courses, and establishing assessment approaches

• Task design includes the creation, development, or acquisition, of specific tasks
for learning, consolidation, assessment, practice, and so on



440 A. M. Mamolo and P. D. Taylor

• Norm enactment includes how the teacher embodies and fosters social and
socio-mathematical norms in the classroom, such as expectations for justifying
statements, posing questions, or precision in defining terms

• In-the-moment responses include teachers’ reactions to unanticipated mathemat-
ical ideas or utterances offered by students

The applicability of abstract algebra to each of these aspects of teaching was
well exemplified by the chapters in this section. In planning activities, there were
considerations of which definitions to use, what emphases to place, and which
properties to address (Chap. 16); in designing tasks, careful choices in numerical
examples were made so as not to “cloud the underlying method” (Chap. 18,
p. 384); norms related to problem solving became more salient (Chap. 19); and
in-the-moment responses were shaped and influenced by a sense of underlying
structure (Chap. 17). Further, these four aspects of the mathematical work of
teaching are all clearly interconnected, and each one can influence all of the
others. For instance, the norms recognized and valued by a teacher can influence
the planning and design of course materials in terms of what and how content
is addressed, and affect how moments of contingency are addressed. Murray and
Baldinger speak to such interconnectedness with their discussion of how an abstract
algebra workshop helped teachers value the importance of precise language in
defining concepts, justification and argumentation. The participants in this study
were given “the mental space” to consider how valuing precision in their teaching
“could impact students’ understanding of solving equations” (p. 424). Engaging
in workshop activities exposed teachers to the “possible strategies they might
employ to strengthen student understanding of solving equations” (p. 425) in
their lesson planning, task design, and in response to student questions. In-the-
moment responses can serve as catalysts for rethinking planning and design, while
also promoting and fostering normative standards of the classroom. Zazkis and
Marmur provide an example of how an unexpected student question triggered a
reconsideration of the original task and a redesign of the lesson for future teachers.
They state: “In both the original and adapted version of the task, basic properties
of group theory served as a guide for the instructor’s responses and as a basis for
further mathematical inquiry” (p. 371).

Approaches

Following the claim of Ball and Bass (2009, p. 11) that “we do not know how
horizon knowledge can be helpfully acquired and developed,” we sought ideas from
the chapters to inform our thinking about this issue. We have thus far presented
our view that abstract algebra has the potential to be a useful (and we might add
beautiful, fun, enticing) context through which horizon knowledge can be enriched.
However, we have not yet addressed the question of “how,” and for us this boils
down to a look at teaching approaches. For this, we consider the different roles

http://dx.doi.org/10.1007/978-3-319-99214-3_16
http://dx.doi.org/10.1007/978-3-319-99214-3_18
http://dx.doi.org/10.1007/978-3-319-99214-3_19
http://dx.doi.org/10.1007/978-3-319-99214-3_17
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that faculties of education and departments of mathematics each play in preparing
secondary teachers. This helps paint a picture of where teachers might reasonably
acquire and develop their horizon knowledge. We then look at specific approaches
exemplified in the chapters, and highlight similarities and differences in approaches,
as they might apply to the different demographics of prospective and practicing
teachers. We conclude this section and chapter by applying what we have learned
and offer a set of examples that build off of ideas from the chapters of this section.
Thus, our exploration of approaches draws on our discussion of ways that abstract
algebra connects to secondary mathematics. Specifically, we address the question
of “how can we build on these connections to support the development of teachers’
disciplinary knowledge?” via the following subsections:

• A vision of teacher preparation: Where from, abstract algebra?
• Structuring educational approaches: Broadening horizons
• Extending connections: Blue skies above the horizon

A Vision of Teacher Preparation: Where from, Abstract
Algebra?

Murray and Baldinger cite recommendations from the CBMS (2012) report that
advocate for the inclusion of courses in advanced mathematics, such as abstract
algebra, in the preparation of future secondary mathematics teachers. They note
further that “among four-year institutions with secondary pre-service teaching certi-
fication programs, 89% of all mathematics departments require their students to take
abstract algebra” (p. 403). The implication seems to be that there is recognition that
abstract algebra “can sure help” teachers, as Zazkis and Marmur quipped. However,
many teacher education programs do not include content-specific requirements for
admission, nor does the pool of secondary teacher candidates include students
only (or perhaps even mostly) from departments of mathematics. In Canada, for
example, a secondary mathematics teacher candidate can gain entry to a bachelor
of education program with only three 6.0 credit mathematics courses from their
undergraduate studies, and these courses tend to be Calculus I and II, and Statistics.
It is important to note that the content and teaching approaches that are common,
and even possible, in (typically) large-scale calculus and statistic courses, are
significantly different from what is common or possible when studying abstract
algebra. Further, there seems to be little impetus for prospective teachers to study
abstract algebra in university: calculus and statistics have more apparent connections
to school curricula, they have “friendlier” reputations amongst students, and there
are often more supports for student learning in these courses. Thus, we agree with
Zazkis and Marmur that “it is reasonable to assume that future teachers studying at
university are not likely to focus on group theory as an important topic in support of
their future career” (p. 365).
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We mention this because one of the first reactions we had to the examples
discussed in these chapters was that, for better or worse, very few of the problems,
activities, or approaches illustrated would be appropriate in a bachelor of education
program. The typical focus on “methods” in faculties of education almost precludes
the introduction of new (advanced, non-curricular) content, even in content-focused
applications, such as analyzing student error patterns. In our experiences with
colleagues from various faculties of education, it has been fairly standard to find
attitudes ranging from indifference to open hostility toward advanced mathematical
knowledge. As such, we suggest that making space for abstract algebra in a bachelor
of education program would be a tough sell. Indeed, the authors of this section’s
chapters might agree with us: the modules discussed in Wasserman and Galarza
were developed for a masters-level abstract algebra course, Cuoco’s examples
stemmed from years of teaching experiences and a personal affinity for mathematics
encountered during graduate studies, Murray and Baldinger developed content-
specific workshops for practicing teachers, and Zazkis and Marmur exemplified
how a teacher educator’s knowledge of abstract algebra can help direct prospective
teachers’ attention to important mathematical structures within school curriculum.

It seems to us that the departments of mathematics might be a more hopeful place
where teachers could be exposed to abstract algebra concepts and their connections
to secondary school teaching. We recall a conversation with a colleague who taught
a masters-level mathematics course called Abstract Algebra for Teachers. When
asked how “abstract algebra for teachers” was different from “abstract algebra,” the
response was “Actually, I hadn’t thought about that.” So, we thought about it. And
in reflecting on our own experiences with the subject matter, and with the ideas
raised in the chapters, we suggest that first of all, there needs to be a difference, and
secondly, there ought not to be much difference at all!

The need for a difference comes from a difference in course objectives and a
difference in learners’ focus of attention. First, we look at course objectives: For
the most part, courses in abstract algebra offered in undergraduate mathematics
programs have mathematical content as a primary objective. Thus, they tend to treat
topics in a comprehensive manner and move with reasonable speed through the
material. Their choice of topics is also significantly influenced by areas of current
research interest; for example, the beginning course that all mathematics majors
take, typically offered in the second or third year of undergraduate studies, focuses
on rings and fields, leaving group theory to later more specialized courses that many
majors do not take. On the other hand, a course aimed at teachers could have the
development of mathematical thinking and structured play as primary objectives,
and comprehensive coverage would not be so important. Indeed, one could imagine
a course with a collection of wonderful activities around groups and rings that would
not start students on the road to a PhD in mathematics, but would give them a sense
of the power of working with structure, of using aesthetic principles as a guide to the
way forward (Sinclair, 2006), and most importantly, how guided play with concrete
objects can lead to an understanding of abstract structures.
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Having said all of that, the more we interact with undergraduate students in an
honours mathematics program, both while they are students and after they graduate,
the more we have come to believe that the course that we have just described for
teachers would be right for the capacities and needs of these students as well. This
is certainly the case for those students who wind up in the general business/industry
environment, including the specialized STEM areas, but we feel that it would
also be the case for those few who do go on to a PhD in mathematics, as these
students will presumably already have the capacity to extract theoretical results
from mathematically rich particular examples. The key here is to use “low-floor,
high-ceiling” activities (Gadanidis et al., 2016; Boaler, 2016) that give all students
welcome access and invite more ambitious students to probe more deeply.

To be clear, the courses we are suggesting here are about mathematics, not
pedagogy. It is their pedagogical style, focusing on mathematical thinking and
investigation, that will set them apart from most of what is currently offered
in programs for math majors. We feel that all students would welcome that
type of course. Having said that, experience with our colleagues in mathematics
departments has led us to feel that they may resist such a change in pedagogy.
Although wonderful exceptions exist, a comprehensive linear development remains
the normative choice for both textbooks and classrooms.

Regarding learners’ focus of attention, we have in mind two possible ways
teachers may study abstract algebra in support of their career—as prospective
teachers in an undergraduate mathematics course, or as practicing teachers in a
graduate mathematics education course. In the former case, the primary learning
objective would likely align with the primary course objective of the undergraduate
program and focus on mathematical content. Thus, their attention would be on their
own personal scholarly growth. In the latter case, the primary learning objective
of the teacher-student is not solely on personal scholarly growth, but also includes
the scholarly growth of their students. In other words, the two sets of learners are
differently motivated in their choice of courses. These differences have implications
for educational approaches in abstract algebra, as we discuss in the next section.

Structuring Educational Approaches: Broadening Horizons

In our work with prospective teachers, we have seen differences in how they tackle
a problem. Some will stare at it with little sense of how to begin, of how to even
think of what needs to be done. Others seem to be able to see that “this is a special
case of that,” or “this belongs over there,” or “if I am to show this, I’m going to
have to show that first.” These students have a grasp of the structure of the problem
that allows them to start moving. Recalling metaphors for horizon, it’s analogous to
finding yourself in the middle of a large unfamiliar city with instructions that you are
to be somewhere at a certain time. Having an aerialmap makes a huge difference,
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particularly if you have experience in reading the map, for example, in how the
different modes of potential transport are color-coded, and how you can transfer
from one to the other. We suggest that the study of abstract algebra can help develop
such a map for the mathematical landscapes of secondary school and further, can
foster the ways of working with that map to understand how to get around. That is,
the study of abstract algebra can develop the capacity to identify and work with the
structure of a problem, and this is a valuable component of a teacher’s KMH.

When examining the chapters in this section for ideas of how to structure
educational approaches for learning abstract algebra, we found both explicit and
implicit suggestions. Cuoco’s chapter, although it did not specifically address educa-
tional approaches, nevertheless exemplified important considerations. Through the
author’s own rich view of the horizon, we note an importance in understanding
definitions and properties, as well as in connecting different methods to solve the
same problem. Cuoco’s understanding of mathematical structure is exemplified
in his comparisons of algebraic and geometric methods, as well as in connecting
methods at different levels of abstraction. For each idea addressed, it is clear that
he has a sense of “where this sits in the bigger picture” (p. 393). We found many
good problems in this chapter that could be very useful, depending on how they are
framed. More on this idea in a bit.

Of the educational approaches explicitly addressed in the chapters, we note
the importance of Mason’s (2002) “experience of disturbance,” as described by
Zazkis and Marmur. A disturbance can compel an individual to rethink previous
knowledge, to seek out new ideas, and it can elicit a shift in attention, and can
enhance awareness—in short, it can broaden horizons. We also appreciated the
emphasis placed on question-posing by Murray and Baldinger. They developed
questions to explicitly draw teachers’ attention toward the similarities and differ-
ences of secondary mathematics and abstract algebra. Explicit connections amongst
secondary mathematics and abstract algebra were also advocated for by Wasserman
and Galarza. We suggest that explicit attention to these connections is valuable for
both undergraduate mathematics students, as well as practicing teachers, but for
different reasons. The former group would benefit from the opportunity to build
on what they have already learned, and it could go a long way for making the
material more accessible, without necessarily hampering the agenda of professors
hoping to educate the next generation of abstract algebra researchers. The benefits
for practicing teachers were discussed by Wasserman and Galarza, who drew on the
instructional model developed by Wasserman, Fukawa-Connelly, Villanueva, Mejia-
Ramos, and Weber (2017) and Wasserman, Weber, and McGuffey (2017) in the
design of their modules. The instructional model “is composed of two parts: building
up from and stepping down to practice” (p. 338). The authors elaborate that, “[i]n
between building up from and stepping down to practice, the advanced mathematics
topics are taught by the instructor in ways true to its advanced nature with formal
rigorous treatment” (p. 338). Such a model intends to help teachers appreciate the
relevance and role of advanced mathematical knowledge in their teaching practice.

The need to consider how we frame abstract algebra problems, particularly for
practicing teachers, relates to the teacher-students’ learning objectives mentioned
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above: their interest is shared between personal growth and the potential to foster
their students’ growth. Thus, we suggest that what will compel teachers to learn
abstract algebra will be different from what will compel undergraduate students,
and as such, problems need to be framed differently. Perhaps most significantly,
there will be a difference in what might constitute a disturbance of experience –
for practicing teachers, that disturbance will likely need to come from classroom
practice.

Extending Connections: Blue Skies Above the Horizon

In concluding this commentary chapter, we repeat our main premise: that abstract
algebra can provide a wonderful context in which to develop and nurture a genuine
appreciation of mathematics. Our engagement with material from the chapters
in this section elicited a broadening of our horizons and inspired some blue-sky
thinking about valuable ways to engage with mathematics that connect to and extend
some of the examples presented. We use this opportunity to offer instructional ideas,
which are motivated by our desire to foster interesting, meaningful, and valuable
mathematical engagement for secondary teachers.

Order of Operations

Zazkis and Marmur broach this topic. It is a huge idea in mathematics, and indeed
the whole notion of linearity, f (a + b) = f (a) + f (b), is about interchanging
order of operations, as is the fundamental theorem of calculus. In the task Zazkis
and Marmur present, they discuss expressions, all alternating multiplication and
division, such as

a ÷ b × c ÷ d

which were given to prospective teachers. The teachers were told that a student did
the calculation by computing the two divisions first, followed by the multiplication,
and were asked whether this was correct. We felt that this task could make
mathematics seem more confusing and harder than it really is, though our concerns
might have been assuaged if we had been provided with more details about
exactly how the task was scaffolded and what discussions might have preceded
it. Nevertheless, the task offers an interesting context in which to foster important
mathematical sensibilities, such as recognizing, challenging, and exploring within
the constraints of mathematical conventions. The expression can invite one to first
ask what the conventions are and second to explore how many different answers
might be obtained with all possible conventions. We connect this to the kind of
mathematical thinking that Mason (2001) refers to as searching for freedom within
constraint. This could lead to rich mathematical discussions, as well as motivate why
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mathematicians generally avoid the use of the symbol ÷, preferring that students get
into the habit of writing expressions such as

a

b
· c

d

where the conventions are clear.

Seemingly Invertible Functions

Another task presented by Zazkis and Marmur defined a pair of functions f and g
from R to R to be “seemingly invertible” if

f (g(x)) = x

for every x in R. The question given to the teachers was whether this implied that
g is invertible. This task certainly has mathematical meaning and could potentially
connect with a number of different kinds of functions and transformations. Similar
to their other example, we found ourselves wondering more about the details of
how the authors engaged teachers in the investigation. For example, in our first
reading of the paper, we were unsure how we might manage to get the teacher
candidates that we have experience with, to come up with the exponential-logarithm
example, as it seems to be unintuitive at first. More generally, our feeling is that
teacher candidates, along with most graduates of first-year calculus courses, are
uncomfortable “playing” with functions of a real variable.

Here we give an example of how we might envision the scaffolding of the task.
We would first make sure that the students knew what an invertible function was,
and being wary of their facility with formal notation, we would ask them to present
the definition with a simple diagram and a finite domain. We would expect a diagram
such as Fig. 20.4.

Fig. 20.4 A simple example
of an invertible function
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Fig. 20.5 The simplest
example in which f(g(x)) = x
but g is not invertible

g f

Fig. 20.6 A generalization of
Fig. 20.5 to real number line
domains

g inv( )g

∞

-∞

0

Then, we would ask them to explore the question of the invertibility of g using
the arrow representation with the smallest possible domain sets that give an example
in which f (g(x)) = x with g not invertible. We would expect them to come up with
the counterexample in Fig. 20.5.

Of course our final objective is to explore the example on the real number line
and an interesting task at this point would be to ask the students to adapt the setup
of Fig. 20.5 to the case in which both domains would be R. We feel that this could
lead to an interesting small group activity. It seems clear that the two blue points in
the middle set would need to be “half” the real number line each, while the red point
would be the entire line. We expect that this would lead to the diagram of Fig. 20.6.

This diagram might well lead the students to the exponential and logarithmic
forms, possibly via the square and square root functions, as discussed in the chapter.
Of course, we still have the question of what f should do with the negative part of
the middle domain and it might easily be seen from this setup that it doesn’t really
matter.

Math and Music

Wasserman and Galarza present a task that exploits the observation that the keys
on a piano work in a mod 12 manner, and they introduce the “distance from C”
operation as a context in which to discuss isomorphic groups. This example seemed
to us to be a bit limited, and perhaps contrived, in that it missed some important and
natural learning opportunities.

What is significant about the remarkable number of interactions between mathe-
matics and the real world is that they have the capacity to give us new and powerful
insights into the structure of the phenomenon being modeled. This is certainly the
case for the structure of the musical scale and there are a number of activities we
might give students that then could provide insights into this structure. In Fig. 20.7,
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0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107

The integers arranged in columns.

C C# D E E F F# G G# A B B
16.35 17.32 18.35 19.45 20.60 21.83 23.12 24.50 25.96 27.50 29.14 30.87
32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
65.41 69.30 73.42 77.78 82.41 87.31 92.50 98.00 103.8 110.0 116.5 123.5
130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9
261.6 277.2 293.7 311.1 329.6 349.2 370.0 392.0 415.3 440.0 466.2 493.9
523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8
1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976
2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951
4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902
The frequencies of the piano keys in cycles/second (using what is called the “even-tempered 

scale”). The standard piano range is A0 = 27.50Hz to C8=4186Hz. “Middle C” is usually taken
to be at 261.6 Hz.

a

b

Fig. 20.7 (a) The integers arranged in mod(12) columns. (b) The frequencies of the piano keys
in cycles/second (using what is called the “even-tempered scale”). The standard piano range is
A0 = 27.50 Hz to C8 = 4186 Hz. “Middle C” is usually taken to be at 261.6 Hz

we give an example that works with the multiplicative structure of the piano keys.
The two tables are not only the same size, but they also have a parallel arithmetic
structure. First of all, there is a clear one-to-one correspondence based on position,
that is 0 corresponds to 16.35 and 67 corresponds to 784.0. Let’s calls this mapping
the function F. Thus F(67) = 784.0 Some questions we could ask include:

1. What happens algebraically as you go along the rows of the frequency table?
2. What happens algebraically as you go down the columns of the frequency table?
3. Find a formula for F(n) in terms of n.

In fact there is much treasure to be harvested from the questions posed in this
example, particularly if there’s a keyboard available. The point is that if we are
going to bring music into the school classroom, we should bring it fully in, play with
it, and seek to understand how it works. In many ways, that is what mathematicians
do best1.

1For those who might be interested in a more detailed discussion, the following link presents such
an activity: http://www.mast.queensu.ca/~math9-12/musical%20magic%20of%2012.html.

http://www.mast.queensu.ca/~math9-12/musical%20magic%20of%2012.html
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Table of Differences

In his polynomial interpolation example, Cuoco starts with a sequence that might
have emerged from a particular exploration, and shows how the successive-
difference method can tell the student whether the sequence can be generated by
a polynomial, and in this case, the number of steps until the differences are constant
will tell us the degree of the polynomial. Many students have seen this constant
difference argument, often in working with quadratic or cubic polynomials, but
given these constant differences, some work remains in finding the coefficients
of the polynomial. By carefully tracking these calculations, Cuoco produces an
elegant formulation of the polynomial in terms of the combinatorial coefficients.
He suggests that these coefficients often reveal “combinatorial treasures” hidden in
the original example. We agree. In fact, we have used the well-known problem about
the number of regions, R, in a circle, formed from all chords between n points on the
circle (in which chords intersect at distinct points), with secondary school students.

The investigation leads to R =
(

n

0

)
+
(

n

2

)
+
(

n

4

)
, which can be obtained

nicely by Cuoco’s difference method, and indeed provides combinatorial treasures
for discussion as well as opportunities to discuss inductive proof approaches.
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