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Abstract. Many articles and papers over the past 100 years have suggested that 

mathematics education has lost its way in a number of critical respects.  One indi-

cation of this is certainly the hugely destructive debate between discovery and drill, 

a consequence of which is an emphasis, throughout the school curriculum, on tech-

nical routines.   

For me, mathematics is the abstract study of structure.  The structures that mathe-

maticians choose to work with have sophistication and beauty and it is remarkable 

that these same structures arise in art, in nature, and in the physical and even social 

sciences.  So often, it is by following the beauty that we are led to the truth, and 

mathematics is a powerful showcase for this delightful principle.  But in spite of a 

century-long call that school math attend to this vital aspect of mathematics, an em-

phasis on structure and beauty, for example in the choice of material, is notably 

absent from realized curricula.   

My view is that such a curriculum change cannot happen without a change in the 

very structure of the curriculum.  Quite simply, we must put aside our technical 

wish-list, and select for our students activities and problems that give them a true 

mathematical experience, and then build the curriculum from there.  Thus this arti-

cle is about structure at two different levels, the first is the structural richness of the 

mathematical activities I want to see in the classroom, and the second is a new struc-

ture for the curriculum itself.   
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5.1 Some brief historical comments 

It has been 100 years since the end of the first Great War.  The history of sec-

ondary school math education reform during that century has been a tangled tale 

and I will begin with a summary of some of the main episodes.  In this, I will be 

following two articles, one by Jeremy Kilpatrick (1997) and another by Kate Ray-

mond (2018).  The tangled nature of the tale comes from the fact that there were 

always two forces at work, one narrow and the other wide, but at different times and 

in different movements, these forces locked horns along different axes.  Along one 

such axis, the narrow view focused on the preparation of students for college and 

university and ultimately for their participation in technology and the STEM disci-

plines, while the wider view emphasized the more general humanistic development 

of informed citizens for a full rich life.  Along another axis, the narrow view tended 

to focus on procedural fluency (back to basics), and the wider on creativity, discov-

ery and conceptual understanding. As a general rule, as we will see, the wider view 

tended to have less effect on classroom practice than the narrow view.  That’s not 

surprising––narrow more focused objectives tend to be easier to grasp and imple-

ment. 

In general, both views make good sense to me and one would think they could 

happily coexist.  Indeed the oscillations that appear in the historical record often 

seems to me to be over-reactions to positions that were not as far apart as many 

seem to have thought.  Indeed my, perhaps idealistic, objective in this article is to 

outline a curriculum structure, one that was long ago elegantly articulated in the 

philosophical record, that would support both of these viewpoints and be true to the 

nature of the subject.   

Following the first war there was definitely a flowering of a wide view of “math 

education for all.”  Philosophically this can be seen in the writings of both White-

head and Dewey (and more on this later) but as both Kilpatrick (1997) and Raymond 

(2018) observe, it was also explicit in the 1923 report of the MAA National Commit-

tee on Mathematical Requirements.  The report argued that  

…the practical aims of school mathematics should be secondary to the mental training 

and development of skills necessary to the discipline of mathematics and the development 

of an appreciation for the beauty, power, and logic in mathematics and geometric objects. 

By focusing on these aims, scholars hoped to avoid school mathematics becoming “a 

collection of isolated and unrelated details” and instead make mathematics more 

appealing to a broader range of students. (cited by Raymond 2018 p. 3.) 

Raymond goes on to suggest that these ideas appear to have had little effect on 

classroom practice.  The technological growth emerging from the second great war, 

along with the 1957 “sputnik” wake-up call, promoted along one axis a narrowing 

emphasis on student preparedness for future scientific and engineering challenges, 

and along another axis, a widening view of the nature of mathematics, away from 

procedural fluency towards conceptual understanding (Raymond 2018 p. 4). A 

dominant idea was that to succeed, students would need a “proper” treatment of 
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mathematics, often interpreted to mean pure math and abstract structures, and this 

became known as the “new math.”   

Of course there was swift reaction and Morris Kline’s 1973 book Why Jonny 

can’t Add: the Failure of the New Math became in many ways the face of the reac-

tion.  Kilpatrick (1997 p. 956) notes that “Kline ended the book by arguing that the 

appropriate direction for any reform ‘should be diametrically opposite to that taken 

by the new mathematics’ (1973, p. 144), toward mathematics as an integral part of 

a liberal education, with connections to culture, history, science, and other sub-

jects.” But that component of Kline’s message did not catch on and the “back to 

basics” reaction to the new math won the day.  Both Kilpatrick (1997 p 956-7) and 

Raymond (2018 page 5) argue that the new math movement was far more diverse 

than is commonly realized and was never properly tested. 

In the 1980s the reform movement returned but this time under the formidable 

banner of the National Council of Teachers of Mathematics (NCTM) Standards 

(1989) which advocated ‘mathematics for all’—the intention of which was to em-

power all students with the skills and abilities that would enable them to be active, 

engaged, and critical members of democratic society. After decades of narrowing 

the focus of school mathematics to prepare students for technological careers, these 

documents were the first to push back against the limited view of school mathemat-

ics and insist on a broader conceptualization. (Raymond 2018, p. 6).   

Of course, there was again strong reaction, strong enough that the term “math 

wars” was used. The main target of the reaction was the “discovery” approach to 

learning which, at the elementary level, diverted students from the important task 

of learning multiplication tables and adding fractions and at the secondary level, 

with its use of heuristics and diagrams, prepared students badly for a rigorous course 

in university calculus.  Indeed the debate had an echo at the university level in the 

reform calculus movement, which in itself has had a huge effect on first-year uni-

versity calculus courses today.  In the early 1980’s there was a suggestion that the 

coming world of computer technology might be better served by a course in discrete 

math or linear algebra rather than calculus and, led by Andy Gleason and others, 

there was a response to make calculus more relevant and mainstream.  That move-

ment was successful in that calculus remains today the default (and often required) 

first-year university math course. Interestingly enough, in a somewhat altered form, 

the idea, that calculus might not be the best default course, is now coming back, 

though in altered form, one that features areas of math and stats that are closer to 

data analysis.   

A central figure in the traditionalist camp was H. Wu of Stanford University.  To 

get a sense of the state of the argument at the close of the 20th century, it is interest-

ing to look at a pair of papers of Kilpatrick (1997) and Wu (1997) which appeared 

side by side in the American Math Monthly, and in fact the last part of Kilpatrick’s 

remarks focused on the Wu paper. Wu makes a number of interesting points––in-

teresting in that they are well worth discussing.  He does accept the appropriateness 

of reform calculus for the typical science and engineering student, but fears that it 

will not well serve the student who is destined for serious university mathematics.  
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Such students “need rigorous mathematical training, and would not be satisfied with 

a steady diet of persuasive heuristics, graphic displays, and nothing else” (Wu 1997 

p 947). I go most of the way with this but would phrase it differently.  Students who 

are destined to study serious mathematics need to be able to make rigorous argu-

ments but I believe that the opportunity to understand and practice these can be 

given to them in a course that features persuasive heuristics and graphic displays. 

5.2 My own half century 

For the past 50 years I have been constructing “discovery” problems for high-

school students.  But over that period there have been a few ways in which my work 

has changed.  At the beginning, I regarded these problems as “after school” enrich-

ment for motivated students. That possibility still exists but, for me, the main stage 

is now the regular classroom.  That objective requires tasks that provide a low math-

ematical floor (requiring minimal prerequisite knowledge), and a high mathematical 

ceiling (offering opportunities to explore more complex concepts and relationships 

and more varied representations) (Gadanidis et. al. 2016 p. 236 Boaler 2016 p 115).  

As I pursue that objective, I find to my surprise that many high-ceiling problems, 

such as those found in university mathematics, can be engineered to have an invit-

ingly low floor, and can work beautifully in high school.   

Over the past few years I have made a deliberate effort to tie my problems to the 

mandated curriculum, and this has affected my choice of subject matter.  For exam-

ple, for the first few decades I chose problems that were fun, enticing and mysteri-

ous, and worked with areas such as geometry, probability, combinatorics, logic, 

games, puzzles.  But in Ontario, fully half of the entire high school math curriculum 

works with properties of functions, and while I believe that this is unbalanced, my 

basket of activities has moved somewhat in the direction of functions.  But here’s 

an interesting anecdote.  In my third-year undergraduate course for future math 

teachers, I take my problems/activities from a balanced set of areas including the 

analysis of functions.  Towards the end of the course I have group projects and 

students can choose the problems they want to work with.  In 20 years with that 

course, no student has ever chosen to work with functions.  What that tells me is 

that their own school experience with functions has hardly ever engaged them in 

play, in design and construction, or in mathematical thinking.   

I have always had an eye on the preparation of our secondary school students for 

university but only recently has that become my main focus.  I watch carefully to 

see what my first-year university students struggle with.  That can be hard to per-

ceive, but my feeling is that their struggles seem to be more connected with the 

focus and clarity of their thinking rather than the execution of what are called “the 

basics.”  A related aspect of these struggles is their handling of problems with a 

complex structure.  Complexity can be contrived, and I find that to be often the case 
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in problems that the students are given, but there are also complexities that are or-

ganic to the structure of the problem.  These are more important, in part because 

they arise naturally and are thereby closely related to structural complexities that 

the students will encounter in their own future lives, both professional and personal.  

In university, students frequently encounter structures with this level of sophistica-

tion. but I find almost no problems of this kind in high school mathematics.   

What do I do with my ever-growing collection of problems?  I show them to the 

teachers that I know or might meet and ask if they want to use them, or if they would 

invite me into their classroom to try them out, or better still, let me come and watch 

while they work with them.  I do get offers, but the teachers that I talk with are often 

wary.  There could be many reasons for that, but the one typically stated is that they 

are running short of time.  They have after all a curriculum to cover and it can easily 

require the full 110 hours that the Ministry allocates. Of course my “wonderful” 

problems are designed to be the curriculum, such that nothing else is needed.  If the 

students can do those, they will surely be ready for my first-year calculus and linear 

algebra courses.  But I can’t yet promise that because the problems are a long way 

from being organized into a complete, coherent, well-supported package.  So I cer-

tainly understand the teachers’ hesitation and am grateful to those wonderful col-

leagues who have been happy to work with me.   

But this brings up the question of the nature and the structure of the curriculum.  

Certainly the curriculum of problems has quite a different structure from the one we 

currently find in school mathematics.  Is it apt to work?  Is there anything to be said 

for such a curriculum?  In fact the ideas of some of the greatest thinkers of the past 

100 years interact rather well with this question of curriculum structure.  I have 

three of these in mind: Alfred North Whitehead, John Dewey and Seymour Papert  

 

(Fig 1).   

Alfred North Whitehead
1861 - 1947

John Dewey
1859 - 1952

Seymour Papert
1928 - 2016  

Figure 1. My three intellectual heroes.   
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5.3 The search for a curriculum structure 

Whitehead’s power and beauty of ideas and Dewey’s experience of the artist 

both emphasize the richness of the learning experience and the importance of the 

training of the mind.  I have argued (Taylor 2018) that the writings of both these 

philosophers have a lot to offer us today.  Raymond (2018) agrees with this but 

suggests that these ideas might have had little effect on classroom practice.   

I start with Whitehead. His Rhythm of Education (1929: Chapter II) effectively 

provides a structure for the curricula of all disciplines.  Here he identifies three 

stages of learning: Romance, Precision and Generalization. To some extent, our 

learning proceeds through these three stages in order, such that, roughly speaking, 

the child is dominated by Romance, the youth by Precision, and the adult by Gen-

eralization. In practice, however, the stages cycle continuously like eddies in the 

fast-flowing stream of life (and indeed at different times we can all be children or 

adults).  

The first stage, of Romance, is one of ferment, novelty and mystery, of hidden 

possibilities and barely justifiable leaps. This stage, in its fullness, motivates the 

second stage, of Precision, in which we strive for comprehension and mastery—

ideas must be tamed and organized, requiring care, honesty and restraint. Finally, 

the third stage, of Generalization, is essentially a return to Romance, but now with 

the technique acquired at stage two. Our ideas have new power because we have 

harnessed them. The great fruit of this ultimate stage of learning is wisdom: the 

capacity to handle knowledge. The central point that Whitehead makes is that the 

discipline of stage two must not be imposed until the fullness of stage one has 

properly prepared the student. Failing that, the knowledge that is obtained will be 

inert and ineffective.  

This “rhythm” sets a structure for the entire 12 years of schooling, one which 

will hopefully sustain us for the remaining years of our learning.  For each particular 

course and indeed for each learning hour, it provides a ritual that we too often fail 

to observe.  I find that it makes a great difference if, when planning a lecture, I 

remind myself of the precedence of Romance.  Certainly Whitehead’s rhythm lays 

to rest that ridiculous conflict between discovery and basics; the first most often 

provides the Romance, the second the Precision.   

Moving on to John Dewey, his search for a structure is encapsulated in the title 

“The need of a theory of experience.” of Chapter 2 of his 1938 essay Experience & 

Education:  

I assume that amid all uncertainties there is one permanent frame of reference: namely, 

the organic connection between education and personal experience.” (1938, page 8).   

That “frame of reference” is what defines the structure of Dewey’s encounter 

with education.  He had of course already, in 1934, developed that theory in the 

powerful context of the aesthetic.  There, his attention was on the audience much 

more than on the performer, particularly in his insistence that the heart of the aes-

thetic experience is found in the response of the viewer.   
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The word “aesthetic” refers, as we have already noted, to experience as appreciative, 

perceiving and enjoying. It denotes the consumer’s rather than the producer’s standpoint. 

It is Gusto, taste; and, as with cooking, overt skillful action is on the side of the cook who 

prepares, while taste is on the side of the consumer, as in gardening there is a distinction 

between the gardener who plants and tills and the householder who enjoys the finished 

product (Dewey, 1934, p. 37). 

In fact too much emphasis on the “finished product” can detract from the expe-

rience.  The opening paragraph of Art and Experience emphasizes this: 

In common conception, the work of art is often identified with the building, book, 

painting, or statue in its existence apart from human experience. Since the actual work of 

art is what the product does with and in experience, the result is not favorable to 

understanding. In addition, the very perfection of some of these products, the prestige they 

possess because of a long history of unquestioned admiration, creates conventions that get 

in the way of fresh insight. When an art product once attains classic status, it somehow 

becomes isolated from the human conditions under which it was brought into being and 

from the human consequences it engenders in actual life-experience. (Dewey 1934, p. 1) 

Some time ago it was not uncommon the hear teachers proudly proclaim: “I don’t 

teach math; I teach students.” I thought at the time that this was a bit silly because 

of course, we do both.  But I’m guessing that the purpose of the phrase was effec-

tively to reinforce Dewey’s important insight.   

 

This then brings us to what Dewey calls the central problem of an education 

based upon experience: “to select the kind of present experiences that can live fruit-

fully and creatively in subsequent experiences.” (1938, p. 9). 

The conclusions he draws from that are, on the whole, well understood today, 

for example that meaning comes only from the present experience of the student, 

and that subject matter earned in isolation, put, as it were, in a water-tight compart-

ment to be opened only at the time of the exam, contributes nothing to the student’s 

future life. But although these conclusions are well understood they are widely ig-

nored.  When I am working in a high-school classroom I put the students in groups 

either at tables or (preferably) standing at white or black boards and I evaluate the 

quality of the problem in part on signs of an engaging and even intense experience.   

Finally I add one more layer to this search for the right structure, and that 

emerges from Seymour Papert’s idea of a project as a significant activity that pro-

vides meaning to the student’s life.  

The important difference between the work of a child in an elementary mathematics class 

and that of a mathematician is not in the subject matter (old fashioned numbers versus 

groups or categories or whatever) but in the fact that the mathematician is creatively 

engaged in the pursuit of a personally meaningful project. In this respect a child’s work in 

an art class is often close to that of a grown‐up artist. (Papert 1972, p. 249). 

More recently, Jo Boaler makes the same point comparing mathematics to language 

studies: 

When we ask students what math is, they will typically give descriptions that are very 

different from those given by experts in the field. Students will typically say it is a subject 

of calculations, procedures, or rules. But when we ask mathematician what math is, they 
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will say it is the study of patterns that is an aesthetic, creative, and beautiful subject. Why 

are these descriptions so different? When we ask students of English literature what the 

subject is, they do not give descriptions that are markedly different from what professors 

of English literature would say (Boaler, 2016, p. 21-22).   

In effect this is an argument by analogy that at the school level, we should be teach-

ing the mathematics that mathematicians do (Taylor 2018). I draw from that idea 

when I find myself constructing a new high school problem.  If, when I am writing 

it up, I, as a mathematician, feel the life and energy waning, that’s a signal the prob-

lem might not after all be right. On the other hand, if the excitement builds, I feel I 

must be on the right track.   

A “project” for Papert is necessarily a sustained endeavour, and that has a num-

ber of consequences: 

This project-oriented approach contrasts with the problem approach of most mathematics 

teaching: a bad feature of the typical problem is that the child does not stay with it long 

enough to benefit much from success or from failure. Along with time-scale goes 

structure. A project is long enough to have recognizable phases—such as planning, 

choosing a strategy of attempting a very simple case first, finding the simple solution, 

debugging it and so on. And if the time scale is long enough, and the structures are clear 

enough, the child can develop a vocabulary for articulate discussion of the process of 

working towards his goals (Papert 1972, p. 251). 

The last idea of this remarkable paragraph is worth highlighting.  Math students 

often have trouble talking about the subject they are studying; they lose the big pic-

ture, if they ever had it, and they get lost in the details.  Papert suggests that a habit 

of sustained engagement can foster discussion at the structural level—if the struc-

ture is rich, there is more to talk about.   

Barabe and Proulx (2017 p 26) make the important point that Papert’s projects 

emphasize doing more than knowing and thereby give the students something much 

more powerful than mathematical knowledge and that is what Papert calls “mathe-

matical ways of thinking.”  That’s really another way of saying that we should be 

teaching the mathematics that mathematician do.  

For me this project structure has the power to give us a natural realization of the 

structures put forward by Whitehead and Dewey.  When our curriculum planning is 

on the level of the project, we seldom need to search for Romance; it is typically 

already in place as an organic component of the process.  In the same way, Dewey’s 

“experience” is typically an integral part of the activity generated by the problem.  

I find that when I am considering whether or not a problem passes the bar of admis-

sion to my classroom, I pay early attention to the student experience (Dewey’s “con-

sumer”), looking for aspects such as surprise (Gadanidis et. al 2016), wonder (Sin-

clair and Watson 2001), flow (Liljedahl 2018), beauty (Sinclair 2006), low floor, 

high ceiling (Gadanidis et. al. 2016 p. 236, Boaler 2016 p. 115). 

And of course a project-oriented curriculum structure is much more creative, 

challenging and even “humanizing” for the teacher; it can nurture her development 

as an artist.   
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5.4 Towards a project-oriented curriculum 

Time to sum up and put things together.  The more I reflect on the present reality 

of high school math, the more of a disaster it seems.  That’s strong language but it’s 

what comes to mind when I think of the students.  Quite simply, they deserve better–

–they deserve the real thing.  That simple truth strikes me most forcefully when I 

go into the classroom and work with them.  For the most part, they are ready to work 

and more importantly, they are ready to play.  

Of course, as things stand at present, most of them feel that what they are getting 

in the classroom is what mathematics is; indeed they simply don’t know what they 

are missing.  More than once, after 75 minutes in the classroom, I get the comment, 

“why isn’t math always like this?”  I do note that, back in the 50’s, we did at least 

encounter the grandeur of the subject, as in Grade 10 we had a full-year course in 

Euclidean geometry.   

So what are they missing?––the best way to answer that is to observe that math-

ematics is the study of structure, and that high school math currently offers no iden-

tifiable structures of any sophistication.  Papert’s projects offer us a way towards a 

curriculum with genuine mathematics.  But how do we get there? 

There are difficulties.  First of all projects are harder to work with and often 

require a level of mathematical and pedagogical experience that many teachers do 

not yet have.  And there is the question of time.  The activities take time and pa-

tience, and teachers often feel that the job of building a proper technical foundation 

for their students already takes almost all of the available class hours.  And finally, 

because my visit is effectively an intervention, the activities can seem disconnected 

and even contrived.  I will discuss each of these factors. 

5.4.1 The technical skills 

They are important; we can’t do mathematics without them.  But if we assemble 

ahead of time all the ones we think we might need, for example to do calculus, the 

basket will be too heavy and will divert us from the real goal.  To work and play 

effectively, we need to travel light, and that requires putting that basket aside and 

having the simple faith that the activities we choose will be comprehensive enough 

to look after the student’s future technical needs.  Those who worry that the students 

might miss some critical skills should spend some time in a first-year university 

calculus course and find out that many of the skills that were “taught” in high school 

were not in fact learned in any effective way.  Skills need meaningful context; the 

more powerful the context, the more solid the skill. 

What is important is that students learn how to master skills.  That’s well under-

stood by students who play guitar or basketball; they simply have to realize that the 

same principles apply to mathematics.  This idea works so seamlessly in music and 

sports because they in fact have that powerful context.  Well, mathematics has an 
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equally powerful context to offer, but it’s one that few students have ever encoun-

tered.  

The other thing to notice is that universities, professional programs and employ-

ers are increasingly emphasizing a new level of what are often called “secondary” 

skills, sometimes called the “C-words”––care, creativity, critical thinking, commu-

nication and collaboration.  A project-based curriculum can often relate more natu-

rally to these.   

5.4.2 Teacher preparation 

Even experienced teachers find it a challenge to work with investigative activi-

ties.  First of all there are usually different ways tackle the problems and it helps to 

be able to anticipate these.  That takes more in the way of preparation time and, 

often, mathematical knowledge as well.  And there are balances to be struck––be-

tween giving the students ideas and letting them find avenues on their own, between 

keeping the class together and giving the faster students questions on the side, be-

tween individual work and collaboration within groups. 

A project-oriented curriculum can be an enormous challenge for teacher candi-

dates.  My colleagues in Faculties of Education well realize that this is an increas-

ingly important part of their job, but there is only so much they can do. The simple 

fact is that most of our learning about how to teach happens when we ourselves are 

being taught and most of today’s fledgling teachers have spent too little time in their 

own mathematics learning exploring and investigating.  I will mention three phases 

of that experience.  One of these is their school experience and that’s not surprising 

as that is of course exactly what we are working to change.  Another is the time they 

spend out of school and there is evidence that the technological and media explosion 

has seduced many of them away from much of that experience.  The third is their 

undergraduate learning and that is an experience that many of the readers of this 

volume have some control over. I am definitely not happy with the nature of most 

of the teaching in undergraduate math courses in North-American universities, par-

ticularly in the “service” courses, and those are often the courses taken by future 

math teachers.  These courses need to purvey less in the way of mathematical 

knowledge and put much more emphasis on inquiry and mathematical thinking. 

Students who might actually need considerable mathematical knowledge typically 

already know that this is the case and respond accordingly. 

5.4.3 What mathematics? 

I want to briefly return to this question of the dominant place the study of func-

tions plays in the senior school curriculum, certainly in North America.  I have ob-

served that the cause of this is almost certainly the role of calculus as the default 
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math course in first-year university and college.  Now whether that remains the case 

or not, my belief is that the current introductory calculus course offered in the senior 

school curriculum is not the right preparation.  It is technical in nature and is very 

much oriented towards the transfer of mathematical knowledge, with little attention 

given to mathematical thinking.  It also gives the students the misleading impression 

that they have already covered much of the first semester of university calculus.  I 

would prefer a course with a theme of modeling and optimization, using many dif-

ferent approaches, analytical, geometric and graphical.  It would not follow the log-

ical technical development of the subject, leaving that for university, but would still 

remain true to the ideas of calculus. The few technical pieces such as the arithmetic 

laws of the derivative could be quickly covered and then employed “in action,” thus 

remaining true to Whitehead’s Romance and Dewey’s present experience.   

I illustrate these remarks with two examples taken from my own body of work 

(Taylor 2016).  Example 1 is a model for the speed at which a car should be driven 

to minimize the cost of gas.   

 

5.4.4 Example 1.  Gas consumption for optimal driving speed.   

We need to start with a graph of gas consumption against speed and there are 

some simple mainstream kinetic energy principles that lead to a simple equation for 

this.  A senior class that has some acquaintance with Newton’s Laws of motion will 

enjoy the challenge of finding the algebraic form of the gas consumption graph 

found in Fig 2a).  It gives rise to some interesting questions such as why is it ex-

pected to be concave-up. For the various components of the problem, we have the 

choice of working with the formula we have derived and using algebra or even cal-

culus, or working with the geometric form of the graph, or of course both. I will 

highlight the graphical argument. 

To begin we ask for the velocity that minimizes the cost of making a trip of a 

fixed distance.  Now the vertical axis z has units in litres consumed per hour at any 

fixed speed v. But to use least gas over a given distance, we want to minimize litres 

per km (z/v) and that requires us to minimize the slope of a secant line drawn from 

the origin to the graph.  This occurs when the secant is tangent to the graph, and the 

optimal speed in this case (Fig 2b) is 50 km/h. This is considerably slower than we 

typically drive on the highway and the reason for this of course is that we put a 

value on our time; to account for that, what we really need to minimize is the sum 

of gas cost and the effective wage we are paying ourselves.  This sum is minimized 

with an elegant generalization of the secant construction of Fig 2b.  Putting the cost 

of 6 litres of gas as the value of an hour of our time (thus with a gas cost of $1.50/L 

this would be $9/h), Fig 2c gives us the reasonable optimal speed of 90 km/h.  This 

is a rich, multifaceted problem that can be tuned and extended in different ways at 

different grade levels.  It certainly earns the status of a Papert project.   



12  

2

4

6

8

10

12

0
100 120806040200

z (L/h)

v (km/h)

2

4

6

8

10

12

0
100 120806040200

z (L/h)

v (km/h)

2

4

6

8

10

12

0

-2

-4

-6

z (L/h)

100 12080604020

z

6

v

(a)

(b)

(c)

 
 

Fig 2. Optimal driving speed.  (a) The gas consumption graph derived from energetic considera-

tions. (b)The optimal speed for a trip of fixed distance.  (c) the optimal speed that incorporates an 

effective wage paid to the driver.   

5.4.5 Example 2. Counting trains 

Some branches of mathematics lend themselves more readily than others to in-

vestigation and what is called “mathematical thinking.”  In my experience projects 

involving discrete structures, geometry, simple probability, strategic thinking 

(games) are more accessible to students and more naturally investigative than is the 

study of functions.  I suggested earlier that the time might have come for us to seri-

ously consider a change in the mix of the mathematical areas taught in high school 

and even university.  In that regard, I offer a modeling project from discrete math.  

Discrete structures appear as a topic in most secondary math curricula, but these 
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often focus on applications to financial math and seldom exhibit the structural rich-

ness that these topics can offer. In this project the students are challenged to provide 

proofs for some of the well-known Fibonacci formulae by invoking properties of 

the structure of trains.   

Problem 1. I want to construct a train of total length n units using cars which are 

either 1 unit long or 2 units long.  The question is, for each value of n, how many 

different trains are there?   

For small n we can simply write all the possible trains down.  Thus Table 1 shows 

that there are 8 different trains of length 5.  To have some notation, we let 𝑡𝑛 denote 

the number of trains of length n.  Thus Table 1(a) shows that 𝑡5 = 8 and Table 1(b) 

gives the results of similar counting exercises.  

 

(a)  

Trains of 

length 5 

1-1-1-1-1 

1-1-1-2 

1-1-2-1 

1-2-1-1 

2-1-1-1 

1-2-2 

2-1-2 

2-2-1 

 

(b) 

Length n  

of train 

Number of  

trains 𝒕𝒏 

1 1 

2 2 

3 3 

4 5 

5 8 

6 13 

Table 1. (a) The 8 trains of length 5.  (b) The train numbers for small n.   

How do we handle large n? There is in fact a standard combinatorial approach--

look at the different possibilities for the number of 2-cars, and count the number of 

arrangements of each.  But there is a much simpler argument using the power of 

recursive thinking. 

We start by collecting some data––actually counting the different trains for small 

values of n by listing the possibilities (Table 1).   

Many students will recognize the pattern in Table 1(b) as the well-known Fibo-

nacci sequence.  The "law" of these numbers is that each term is the sum of the two 
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preceding terms.  Once they see this pattern, they figure that the problem is solved.  

For example, the number of trains of of length 7 will be 8+13=21, etc.  But can we 

be sure of that?  Do we know for sure that the pattern continues?  That’s our first 

problem.   

Let me point out that there's more here than a question of certainty.  If this really 

does hold, one would think there ought to be a simple elegant argument for it (after 

all there's nothing very complex going on here) and it is that “expectation” of ele-

gance that motivates the mathematician.   

Establishing the recursion.  Our task is to convince ourselves that the simple sum 

rule should hold for the train sequence.  As a specific example, take the equation: 

𝑡7 = 𝑡6 + 𝑡5 

Find an argument that the number of 7-trains has to be the sum of the number of 

6-trains and the number of 5-trains.   

I give this question to the class, but they’ve never seen anything like it before 

and hardly know where to begin.  How could such an argument ever be constructed?  

I give them a hint––well it’s more than a hint, it’s a simple but powerful idea that 

will serve them well in all the remaining problems we will look at.   

The equation asks you to show that one quantity (𝑡7) is the sum of two other 

quantities (𝑡6 and 𝑡5).  Now all three numbers are the sizes of sets of objects with a 

particular structure.  Maybe there’s a natural way (using the structure) of partition-

ing the objects in the 𝑡7-set into two types that corresponding naturally to the objects 

in the two other sets (𝑡6 and 𝑡5).   

For example imagine that you are atop the CN Tower looking down at all 21 

trains of length 7, each of which has an engineer.  Think of an instruction you can 

give the engineers: “if your train has the following property drive it to the east, and 

if it doesn’t drive it to the west” such that there is a natural 1-1 correspondence 

between the trains that go east and all the trains of length 6, and between the trains 

that go west and all the trains of length 5.  

This is the hint I give the students but many of them have more trouble with it 

than I have expected.  That convinces me more than ever that this is the sort of 

analysis that needs to appear earlier in their lives.   

Here’s the argument (Fig 3).  The trains of length 7 are of two kinds: those that 

begin with a 1-car and those that begin with a 2-car.  Now how large is each set?  

Well it’s clear that there are 6t  trains in the first (the rest of the train can be any 

train of length 6) and 5t  in the second (the rest of the train has length 5).  So 7t  

must be the sum of those two numbers. 
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Fig 3.  The instruction for the engineers––if your train starts with a 1-car, go east, and if it starts 

with a 2-car, go west. 

A number of students come up with this argument but in a slightly looser form.  

They say: put a 1-car in front of all the trains of length 6 and put a 2-car in front of 

all the trains of length 5––in both cases you get a train of length 7.  That’s correct 

but to get the sum formula you do have to verify (or point out) that you get every 

train of length 7 with one or the other of these constructions and no train of length 

7 will get counted twice.   

 

It’s clear that this argument is quite general, and could be used to show that the 

number of trains of length 8 is equal to the sum of the number of trains of length 7 

and the number of trains of length 6, etc.  So the additive rule always holds.   

𝑡𝑛+1 = 𝑡𝑛 + 𝑡𝑛−1 

We deduce from this that the train numbers are given by the Fibonacci numbers, 

and we can therefore continue the table as far as we wish (Table 2a).  For example, 

without doing any counting, we can be sure that the number of trains of length 12 

is 233.   

 

  (a)    (b) 

n 𝑡𝑛 

0 1 

1 1 

2 2 

3 3 

4 5 

5 8 

6 13 

7 21 

8 34 

9 55 

10 89 

11 144 

12 233 

Table 2 (a) The train numbers.  It is often mathematically convenient to start the count at n=0.  

Can we make "train" sense of this?  Perhaps––there's only one train of length 0 and that's the empty 

train. (b) Sums of squares of neighbouring Fibonacci numbers. 

The unexpected power of the trains-numbers.  We have established a correspond-

ence between the train numbers and the Fibonacci sequence.  This is an elegant 

mathematical result.  But it is also unexpectedly powerful.  Here’s why.  

The Fibonacci numbers possess many wonderful arithmetic properties, but most 

of these are not so easy to prove.  Here’s a remarkable idea.  Take any of these and 



16  

interpret it in terms of trains.  Perhaps the structure of trains will give us a way to 

establish the property and even “see” why it ought to be true.  Here’s an example. 

 

Problem 2: Sums of squares.  Take two consecutive Fibonacci numbers and add 

their squares.  It appears that we always get a Fibonacci number (Table 2b). For 

example: 

52 + 82 = 89 

This is a fascinating property and it’s not at all easy to see why it should be true or 

to get any kind of intuition for it.  [If you don’t believe me, give it a try.] So we ask: 

Can we find a train-theoretic argument for this property? 

Let’s look for such an argument for the special case n = 5: 

𝑡10 = 𝑡5
2 + 𝑡4

2 

Following our previous idea, we look for a natural partition of the trains of length 

10 into two disjoint classes with 𝑡5
2 trains in the first class and 𝑡4

2 trains in the 

second.  A clue comes from noting that the subscripts 5 and 4 have the status of 

being roughly half of 10––this suggests that the classification ought to be based on 

something like "cutting the trains of length 10 in half."  Can you take it from there?  

Well here’s an argument I often get from students.  Take a train of length 10.  Its 

first half is a train of length 5 and its second half is a train of length 5.  There are 𝑡5 

possibilities for the first half, and for each of these there are 𝑡5 possibilities for the 

second half. So that’s a total of 𝑡5
2 possibilities.  We conclude that there are 𝑡5

2 

trains of length 10.   

Except there aren’t––there are evidently 𝑡5
2 + 𝑡4

2 such trains.  So what went 

wrong? 

It doesn’t take long to see the problem––not all trains can be cut in half.  What 

we have effectively argued is that there are 𝑡5
2 trains of length 10 that can be cut in 

half.  And from the formula, we guess there must be 𝑡4
2 trains of length 10 that 

cannot be cut in half.  So what stops a train from being cut in half?––if there’s a 2-

car right in the middle!  In that case, to cut the train in half you’d have to cut the 2-

car in half. Okay––how many trains of length 10 are there that have a 2-car in the 

middle?  Well the part in front of the 2-car is a train of length 4 and the part behind 

the 2-car is a train of length 4 and that’s a total of 𝑡4
2 possibilities (Fig. 4).  Now 

that's an argument of great beauty! 

 

 

 

 

 

 

Fig 4.  The “trains proof” of the sum-of-squares property for the Fibonacci numbers.  
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There are many more Fibonacci examples of this form of argument.  It can also 

be used to illuminate some of the remarkable relationships between the Fibonacci 

numbers and Pascal’s triangle.  An example is found in Fig 5.  

1 1 2 3 5 8 13 21 34

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

 

Fig 5.  One of the many remarkable relationships between Pascal’s triangle and the Fibonacci 

numbers.  Can you find a “trains” argument? 

It is interesting to note that in these problems, the train numbers serve as a 

“model” of the Fibonacci numbers, but the modeling in this case is the reverse of 

what normally happens.  Typically we have a real-world situation (e.g. minimizing 

gas consumption) and we find abstract mathematical equations to describe it and 

establish new properties.  But here we are starting with an abstract entity, the Fibo-

nacci numbers, with a number of observed properties, and we are using a real-world 

structure (trains) to establish these properties.  Fascinating. 

5.5 Conclusions. 

There is much current interest in mathematics education at the elementary level, 

and this is also the case at the tertiary level. But there is not so much at the secondary 

level.  It is generally agreed that the job of high school is to prepare students for 

college and university and for the most part that’s about technical proficiency and, 

in that regard, the current curriculum is doing the best it can.  In my view, this is far 

from being the case. It is true that students need a good level of technical mastery, 

but here is Whitehead’s commentary on that: 

The mind is an instrument; you first sharpen it, and then use it… Now there is just enough 

truth in this answer to have made it live through the ages. But for all its half-truth, it 

embodies a radical error which bids fair to stifle the genius of the modern world… The 

mind is never passive; it is a perpetual activity, delicate, receptive, responsive to stimulus. 
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You cannot postpone its life until you have sharpened it… There is only one subject-

matter for education, and that is Life in all its manifestations. (Whitehead 1929, p. 6). 

We can look at the math curriculum through many lenses.  One of these is the 

subject matter that is taught and I have discussed that above.  Another has to do with 

the level of sophistication and that is a major theme of this chapter, particularly in 

terms of structural sophistication.  A third has to do with the pedagogical approach 

and I certainly come down on the side of an investigative curriculum.  And I have 

argued that this can work only with a curriculum structure that puts technical con-

siderations aside and focuses on Dewey’s experience and Papert’s projects. 

There is another aspect of this that I want to emphasize in closing and that is 

closely related to the concept of integrity.  Put yourself in the role of the teacher 

who goes into the same classroom each day.  What you do there with your students 

needs to reflect and reaffirm your human nature; for your students it is who you are, 

and it is also what mathematics is.  There needs to be a unity or wholeness about 

that and a curriculum that supports and nurtures that has what I want to call “integ-

rity.”  On a philosophical level, we can see aspects of this in the ideas of Whitehead, 

Dewey and Papert, that in a real sense they are all talking about the nature of the 

human experience.  Now move to the level of the students, sitting in formal rows, 

or moving chaotically among neighbouring whiteboards; what are they noticing?  

Of course they are attending to the mathematics, the more so if it is engaging.  But 

a significant slice of their attention is surely focused on character and mood and 

unity, indeed on the integrity of the experience.  That will inform not only their view 

of mathematics, but also their evaluation of ideas, of learning, of what school is all 

about, and most importantly, their allegiance to their teacher. 

Given that, it is more important than ever that what happens in the classroom be 

real mathematics, the mathematics that mathematicians do.  Of course, no matter 

what grade we are working with, the mathematics we are considering will likely 

have to be tamed or engineered to fit inside our classroom.  Having said that, I have 

often been amazed at what can be done with a sophisticated activity and at how well 

the students are able to step up to the plate.  

Mind you, when I say “real mathematics,” I don’t mean that it has to be extracted 

from a research paper or a 4th-year seminar.  It simply has to be something that 

interests and even delights a mathematician, that it has him or her, at the first op-

portunity, whipping out a pencil and sitting down to play.   

For example consider the equation.   

√3
3

8
= 3√

3

8
 

No mathematician I know can resist that equation, and I and my teacher colleagues 

have gone a long way with it in a number of grade 9 classes, introducing the students 

to the power of abstraction. Even more intriguing (and somewhat more advanced) 

is the equation 
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(
9

4
)

27
8
= (

27

8
)

9
4
 

Of course in both cases, the problem is to find other examples with the same 

structure. One of my projects (Taylor 2016) is built around a collection of such 

equations.   

Peter Liljedahl (2018) uses the word “flow” to describe the way in which a good 

problem or activity moves the student seamlessly along from one stage to another. 

I look for that when I am working with a class.  When this happens the energy is 

palpable and it can be a challenge keeping the class together. This brings to mind a 

wonderful passage of John Dewey.  

Experience in this vital sense is defined by those situations and episodes that we 

spontaneously refer to as being "real experiences"; those things of which we say in 

recalling them, "that was an experience." It may have been something of tremendous 

importance--a quarrel with one who was once an intimate, a catastrophe finally averted by 

a hair's breadth. Or it may have been something that in comparison was slight--and which 

perhaps because of its very slightness illustrates all the better what it is to be an 

experience. There is that meal in a Paris restaurant of which one says "that was an 

experience." It stands out as an enduring memorial of what food may be. Then there is 

that storm one went through in crossing the Atlantic––the storm that seemed in its fury, as 

it was experienced, to sum up in itself all that a storm can be, complete in itself, standing 

out because marked out from what went before and what came after…In such 

experiences, every successive part flows freely, without seam and without unfilled blanks, 

into what ensues . (Dewey 1934 p. 43). 
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