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Commentary 

Teach the mathematics of mathematicians. 

Abstract: The secondary-school mathematics curriculum is narrow in scope and technical in 

character; this is quite different from the nature of the discipline itself. As a result, it offers little 

inspiration to both students and teachers, and it provides students with a poor preparation for 

university mathematics courses and indeed for life. Stretching over the past century, and recently 

more than ever, there have been calls for change, for a curriculum that is true to the subject of 

mathematics as the creation and study of patterns and structures. While there are hopeful responses 

to this at the elementary level, there is almost nothing at the secondary level. Ironically it is felt that 

in order to prepare students for university calculus, the secondary curriculum simply has to be what 

it is. This is a special case of a myth that needs to be destroyed.  
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1. Statement of the myth 

I take it as understood that mathematics is a central discipline in the school curriculum. As a 

consequence, it is important that the teaching and learning of mathematics be held to a high standard. 

However it has frequently been remarked that in our K-12 school system, this high standard is not 

generally met. There are two aspects of this. One focuses on student knowledge and performance––

students seem to have little knowledge of the subject and they can do very little with what they do 

have [1 Chapter 5]. The other concerns the student experience. Mathematics is a subject full of wonder 

and beauty, but students in secondary school rarely experience that [2, 3]. 

Interestingly it is our concern about the first that has led to the second. Our worry about student 

knowledge and performance has led us to construct a curriculum that is narrow in scope and 

technical in character. There is little room for wonder and beauty in such a design.  

In my own teaching experience, I find this problem to be particularly pronounced at the 

secondary level. In elementary school, the curriculum is more open, more flexible, and there is more 

time for “play,” certainly in the hands of a mathematically “playful” teacher. At university, the 

overall agenda is the encounter with “real” mathematics where wonder and beauty is there for the 

“taking,” but again this needs a mathematically “giving” teacher. But at the secondary level the 

emphasis seems to me to be quite definitely the preparation of students for college and university, 

most particularly for calculus, and for some reason we have interpreted that mandate at a purely 

technical level. Hanna [4] (p. 20) tracks some of the origins of this. 

Now why is that the case? Why have we settled for such a sterile experience for our students 

and our teachers? This is justified, explicitly or implicitly, with the claim that our hand is forced by 

the nature of the discipline, that in mathematics a sufficient technical base must be put in place before 

the “real” subject can be tackled. In this regard, mathematics is different from other disciplines, such 

as biology, history, English and the creative arts; in those subjects the student can learn by playing 

with the same kinds of questions, structures and works of art that the professionals work with and 

talk about. But this is not the case in mathematics. This brings us to the statement of the myth. 

The Myth. The narrow technical character of the school math curriculum is a necessary 

consequence of the nature of the subject itself. The curricula of other subjects are based on the 

investigation, discussion and enjoyment of sophisticated questions, narratives and creative works of 

interest to professionals in the field. Analogous works exist in mathematics but these are not yet 

accessible to school students. The reasons for this are found in what is a fundamental difference in 

nature between mathematics and other disciplines.   
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2. The community of disciplines 

My objective here is to situate mathematics as a member of a community of disciplines, and I 

begin by asking what exactly mathematics is. G.H. Hardy, in his 1940 “apology” for being a 

mathematician, said [5] (p 40) “A mathematician, like a painter or a poet, is a maker of patterns. If his 

patterns are more permanent than theirs, it is because they are made with ideas.”  Since that time, 

there have been many restatements of this idea; mine is that mathematics is the abstract study and 

creation of structure. Of course Hardy need not have stopped at painters and poets; any scholar or 

analyst, from literary criticism to neuroscience to urban design, is engaged in the study and creation 

of structure. What sets mathematics apart is the abstract level at which it works––it studies structure 

for its own sake. That is what gives it both its purity and sense of beauty, and its unexpectedly wide 

applicability to the many different kinds of questions we ask about the world we live in. I recall that 

as a young man, it was this purity that attracted me to mathematics.  

Structures can be simple and they can be complex. Some mathematical structures, for example 

the multiplication of integers or fractions, are fairly simple, though can still be quite rich.  Others are 

more complex or sophisticated, and multiplication offers a good example of this in its generalization 

to integers modulo n, complex numbers, transformations and ultimately group theory.  

Sophisticated structures are hard to understand; to work productively with them requires a lot 

of what is often called “play”––kicking around different kinds of concrete realizations, looking at 

things from different angles, extracting components to see how they fit together. To succeed in such 

play, you have to be able to hold in your mind and work with a number of different things at once 

(and it has been suggested that in mathematics this number might be as high as five). Now to manage 

that, you can’t keep track of everything in your conscious mind, and that means you have to make 

certain things “automatic.”  Think of a juggler keeping five balls in the air. The conscious mind must 

keep track of some aspects of the five trajectories, but it certainly cannot handle them all; hours of 

practice are needed to internalize the routine. And what is the nature of that practice? Quite simply, 

you learn to juggle by juggling––perhaps with fewer balls.   

What is true for juggling is true for any discipline that works with sophisticated structures, and 

that pretty well covers all the fields of study in today’s academic landscape. In our high schools we 

see this in almost every classroom. In biology class they talk about the complex ecological effects of 

deforestation; in history class they discuss the reasons for the decline of empires, in drama they study 

Cat on a Hot Tin Roof, and in English they read Wuthering Heights, all activities that work with a 

sophisticated structure and are of great interest to professionals in the discipline. But this is not what 

things look like in the math classroom. Jo Boaler reflects on this dichotomy. 

There are other indications that math is different from all other subjects. When we ask 

students what math is, they will typically give descriptions that are very different from 

those given by experts in the field. Students will typically say it is a subject of calculations, 

procedures, or rules. But when we ask mathematician what math is, they will say it is the 

study of patterns that is an aesthetic, creative, and beautiful subject. Why are these 

descriptions so different? When we ask students of English literature what the subject is, 

they do not give descriptions that are markedly different from what professors of English 

literature would say [3] (pp. 21-22).   

Her juxtaposition of English and mathematics works well for me, as in the school curriculum these 

are the two disciplines sit at the center of the school program. English also has a strong generative 

component, typically lacking in school mathematics. Students in English understand that they are 

expected to write creatively; but in math class they will claim that it is unfair to be asked to solve a 

problem they have not seen before. To discover why these two subjects differ in such a significant 

manner, I take a closer look at the nature of the high school mathematics curriculum. 

3. The high school math curriculum—an activity 

It’s not hard to get a sense of the nature of the high school math curriculum. One can sit in a 

classroom for a few periods, or read a few sections in one of the many textbooks, or consult the official 
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curriculum document. All such documents begin with general discussions of process, but the realized 

curriculum is more often what is detailed in the specific expectations and examples. Here I give an 

example of an activity taken from the Ontario Grade 12 Advanced Functions curriculum. 

 

Clearly a mathematician would never simply “use technology to investigate linear, quadratic, 

and exponential models for this relationship.” Rather he or she would begin by thinking about how 

the data were generated and what physical processes were at work. And in fact that leads to quite a 

wonderful story. As a way of understanding what is missing in the Ministry description, I will 

summarize that story.   

It turns out that my then PhD student, Nathalie Sinclair, and I generated that very data in 1998 

in a Grade 12 class [7]. First of all the data was taken by the students themselves from a real tire. They 

pumped the tire up, drilled the hole, and monitored the fall of pressure over, not 30 minutes, but an 

entire hour. And what did we do for that hour?––we talked about what might be going on and how 

you might build a model for the emerging data set, and that took us into a discussion of the shape of 

the curve. Even during the first 10 minutes when we had only 3 data points, we had a discussion 

over whether we should get a straight line or a curve that would get flatter as time went on. And that 

brought us up against this mysterious concept of air pressure.  We could “feel it” clearly enough by 

putting our fingers against the hole, but how were we to mathematize it? We finally agreed that this 

pressure should be less when there was less air inside “pushing” the air out, but how on earth might 

we get a precise hold on this apparently complex phenomenon?   

Because of that perplexing discussion they were ripe to be surprised [8]. We suggested that it 

was perhaps not complicated at all, but that the molecules of air were simply scooting around the 

inside of the tire, bouncing off whenever they hit the inner surface of the tire, except for those rare 

cases in which they encountered the hole instead and then they passed right through into the outside 

Ontario Grade 12 Advanced Functions 

3.3 Solve problems, using a variety of tools and strategies, including problems arising 

from real-world applications, by reasoning with functions and by applying concepts 

and procedures involving functions (e.g., by constructing a function model from data, 

using the model to determine mathematical results, and interpreting and 

communicating the results within the context of the problem). 

Sample Problem. The pressure of a car tire with a slow leak is given in the following 

table of values: 

Time, t (min) Pressure, P (kPa) 

0 400 

5 335 

10 295 

15 255 

20 225 

25 195 

30 170 

 

Use technology to investigate linear, quadratic, and exponential models for the 

relationship, of the tire pressure and time, and describe how well each model fits the 

data. Use each model to predict the pressure after 60 min. Which model gives the 

most realistic answer? [6] (pp. 97-98). 
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air. So that the pressure against the finger was simply the normal punch of the speeding molecules 

that escaped from the tire. With that memorable clarifying insight, the students were ready to observe 

that the flow rate must be proportional to the number of molecules inside the tire, leading directly to 

the exponential model 𝑃 = 𝐴𝑟𝑡. To evaluate the parameters A and r we could use Excel to fit the data 

set with an exponential curve, but this is really too good an opportunity to use a log plot. We take 

the logarithm of the P-data and plot these against time and what we get really does generate some 

wonderful awe.   

 

 

 

 

 

 

 

 

 

 

 

 

 

That straight line is a visual verification of our exponential model, one that a simple exponential fit 

would not accomplish nearly so well. And it is all the more memorable as it was generated by the 

students’ own hands. At this point we could (and eventually did) fit a linear equation to the data 

and exponentiate that to arrive at the P-equation. But as I recall, even before that, I printed a copy 

of the logP-graph, gave the students rulers and had them estimate slope and intercept and construct 

from these an equation for the line. And when they exponentiate that, they have constructed a truly 

“hands-on” version of the P-equation.  

What had this activity, which occupied two 75-minute class periods, accomplished? It gave the 

students a hands-on engagement with a sophisticated structure, talking about it, engaging it in 

different ways, and performing a mathematical analysis. Of most importance it was an activity that 

a mathematician would find interesting and it began with the question that the mathematician 

would first ask: what exactly is going on here? There is a sense in which the “sample problem” above 

does invite the reader to investigate which model might be more “realistic,” but the set-up and the 

context are completely misleading, and it would require an unusual teacher, with experience, time 

and additional resources, to construct from the stated activity a truly mathematical investigation.  

4. The wisdom of the past. 

To understand what to do with all this, I need to connect these ideas with the writings that have 

most influenced my teaching life. I begin with Alfred North Whitehead, whose 1929 book, The Aims 

of Education, was the bible throughout my early teaching years.  

There is only one subject-matter for education, and that is Life in all its manifestations. 

Instead of this single unity, we offer children––Algebra, from which nothing follows; 

Geometry, from which nothing follows; Science, from which nothing follows; History, from 

which nothing follows; a Couple of Languages, never mastered; and lastly, most dreary of 

all, Literature, represented by plays of Shakespeare, with philological notes and short 

analyses of plot and character to be in substance committed to memory. Can such a list be 

said to represent Life as it is known in the midst of the living of it? [9] (pp. 6-7) 

Here Whitehead is clearly not denigrating Algebra, nor the plays of Shakespeare, but he despairs of 

the narrow technical version that typically dominates the classroom. Whitehead certainly 

understands the critical role that technical mastery plays in learning and indeed in any creative 

enterprise, but it must be properly situated in what he calls the Rhythm of Education [9] (Chapter II).  
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There he identifies three stages of learning: Romance, Precision and Generalization. To some extent 

all our learning proceeds by passing through each of these stages in order, such that roughly 

speaking, the child is dominated by Romance, the youth by Precision, and the adult by 

Generalization. In practice however the stages cycle continuously like eddies in the fast flowing 

stream of life (and indeed at different times we can all be children or adults).  

The first stage of Romance is one of ferment, novelty and mystery, of hidden possibilities and 

barely justifiable leaps. This stage, in its fullness, motivates the second stage in which we strive for 

comprehension and mastery––ideas must be tamed and organized, requiring care, honesty and 

restraint. Finally, the third stage is essentially a return to Romance, but now with the technique 

acquired at stage two. Our ideas have new power because we have harnessed them. The great fruit 

of this ultimate stage of learning is wisdom: the capacity to handle knowledge. The central point that 

Whitehead makes is that the discipline of stage two must not be imposed until the fullness of stage 

one has properly prepared the student. Failing that, the knowledge that is obtained will be inert and 

ineffective. That seems often to be the case for the knowledge that students bring into my first-year 

university course.  

I now turn to John Dewey and among all his influential writings, it is his 1934 book, Art as 

Experience, that for me has unlocked the mysteries of education. Here, Dewey constructs an entire 

theory of the aesthetic around individual experience; in effect he calls us to be artists in all our 

interactions, and the canvas upon which we paint is our very experience.  

The word "aesthetic" refers, as we have already noted, to experience as appreciative, 

perceiving and enjoying. It denotes the consumer's rather than the producer's standpoint. 

It is Gusto, taste; and, as with cooking, overt skillful action is on the side of the cook who 

prepares, while taste is on the side of the consumer, as in gardening there is a distinction 

between the gardener who plants and tills and the householder who enjoys the finished 

product [10] (p. 37). 

Dewey’s main thesis is that the aesthetic experience is jointly constructed between painter and 

viewer, performer and audience, that both are called to be artists in a shared experience. For me this 

captures the essential character of the teacher-student relationship; I as teacher am the gardener, the 

student is the householder and we are working together to create beauty, and that means that we 

both have our hands in the earth. Seymour Papert warns that this cannot happen unless the activity 

brought into the classroom has meaning for the student: 

The important difference between the work of a child in an elementary mathematics class 

and that of a mathematician is not in the subject matter (old fashioned numbers versus 

groups or categories or whatever) but in the fact that the mathematician is creatively 

engaged in the pursuit of a personally meaningful project. In this respect a child's work in 

an art class is often close to that of a grown‐up artist. [11] (p. 249). 

In my own work I have little experience with art class, but I do have some experience with drama, 

and there I find a substantial parallel between the response of the student and the teacher to the work 

being studied and constructed. I do not think it is unreasonable to strive for comparable harmony in 

the mathematics class.   

In mathematics, aesthetic considerations are regarded as significant in the quest for truth and 

they infuse every aspect of a mathematician’s life [8]. Nathalie Sinclair’s marvelous book Mathematics 

and Beauty [12] discusses the different ways in which aesthetic considerations impact the 

mathematician’s work, the motivational—what structures are worth investigating, the generative––

how we come to understand the workings of the structure, and the evaluative––choosing the best 

among different possible approaches or analyses [12] (part III). Of these, the generative role has 

perhaps been the most fascinating to me, how beauty and wholeness can be a reliable guide in our 

search for the correct path. Poincare [13] famously wrote that this link between beauty and truth 

worked through the unconscious and was fundamental to the discovery process. Papert in a 

wonderful essay [14] took this theme up in his quest to use technology to show the process at work 

in the activity of children. His ideal classroom is built around what he earlier described as projects. 
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This project-oriented approach contrasts with the problem approach of most mathematics 

teaching: a bad feature of the typical problem is that the child does not stay with it long 

enough to benefit much from success or from failure. Along with time-scale goes structure. 

A project is long enough to have recognizable phases—such as planning, choosing a 

strategy of attempting a very simple case first, finding the simple solution, debugging it and 

so on. And if the time scale is long enough, and the structures are clear enough, the child 

can develop a vocabulary for articulate discussion of the process of working towards his 

goals [11] (p. 251). 

This certainly fits my own recent work and I find myself paying considerable attention to the question 

of what structures are the right ones to bring into a class of students at various grade levels. Barabe 

and Proulx call Papert’s project-oriented approach a complete rebuild, “une reconstruction complète” 

of school mathematics [15] (p. 26), defining the mathematics curriculum itself not in terms of content 

but as the activity or experience of the students.  

5. A complete rebuild 

In the mathematics classroom we should be doing mathematics, and mathematics is what 

mathematicians do, and what mathematicians do is seek to understand the structure of complex 

systems. And as I have said, what sets them apart from other scientists and humanists and artists is 

that they work on an abstract level.  

My proposal here is that the mathematics curriculum should be built around structurally rich 

activities of which the tire-pressure investigation is an example. Of course technical procedures such 

as completing a square or simplifying log(3𝑦𝑒2𝑥) will be practised but they should arise organically 

as part of a greater investigation. I will give three reasons for this proposal. First, that’s what 

mathematics is and if we are going to do something else in high school we should be honest and 

give the course another name. Secondly mathematical activities have beauty and integrity and such 

experiences are fundamental to human nature. And thirdly, if we ask what capacities our students 

will need in their future lives, the answer is that these are not the completion of a square and the 

simplification of log(3𝑦𝑒2𝑥), but are rather the investigation of complex structures.  

The current mathematics curriculum does not have this character. Indeed it might best be 

described as a collection of fragments, and the sample problem above is an example of such a 

fragment. These fragments are of course wannabe components of beautiful sophisticated structures, 

but those structures hardly ever appear in the classroom. Those few students who choose to take 

the time to play with the fragments and talk about them and build castles with them can have the 

wonderful experience, often over subsequent years, of seeing those structures emerge, but for most 

students the fragments remain a mysterious rite of passage (but passage to what?). 

If fragments occupy one end of the experience spectrum, wholeness lies at the other, and 

Whitehead’s Life and Rhythm, Dewey’s aesthetic and Papert’s projects are about the wholeness of 

the student experience. Another aspect of wholeness, quite relevant to my emphasis on the creative 

arts, is found in an observation by Geoffrey Vickers that the loss of an organic connection between 

Science and Art is recent and unnatural. He bemoans: 

the sad history of Western culture which, over the last two centuries, has so narrowed the 

concepts of both Science and Art as to leave them diminished and incommensurable rivals,–

–the one an island in the sea of knowledge not certified as science; the other an island in the 

sea of skill not certified as art…  Moreover the two words "Ars" and "Scientiae" not only 

embraced virtually all skill and knowledge, but also overlapped each other's territory 

without offense [16] (p. 143). 

This passage came my way at an important moment in my life, and supported my desire to move 

forward into the aesthetic. The cultural forces that Vickers is talking about are precisely those that 

have bent our school curricula to the grim task of preparing the students for a STEM future in a 

technologically-driven society. The irony is that employers who are hiring in the STEM disciplines 
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are now more interested in the so called complementary traits, the five C’s, creativity, critical 

thinking, collaboration, cooperation and care [1]. 

I end with three questions. Are the teachers ready for this rebuild? Are the students ready for 

this rebuild? Are the architects of the curriculum ready for this rebuild? 

The teachers. A high school Math Head I have been working with asked recently: “Where are 

we going to find the teachers for this? The teacher candidates I work with don’t understand how to 

play with mathematics.” I feel that there is some change here. In my own interaction with math 

faculty at Faculties of Education I find that they understand what need to be done and are working 

as hard as they can in their courses to accomplish this. In my experience, where things have gone 

wrong for their students is more often in the BA and BSc classrooms which “cover” material at a 

rate that is manageable by perhaps the top 30% of the class but which reduce the others to the 

anxious experience of memorizing contexts, leaving little time for play. Often our future high school 

teachers are recruited from that 70%. 

The students. There is a wide range of evidence ([2, 11, 17] that students of all ages are aesthetic 

beings and are capable of more creative endeavours than we credit them with. Even so there will 

always be great heterogeneity in the level of the activity students can handle. For this reason, 

considerable attention is being paid to the construction of tasks providing a low mathematical floor 

(requiring minimal prerequisite knowledge), and a high mathematical ceiling (offering opportunities 

to explore more complex concepts and relationships and more varied representations) [8] (p. 236). 

Boaler discusses such activities. 

Low floor, high ceiling tasks allow all students to access ideas and take them to very high 

levels. Fortunately, low floor, high ceiling tasks are also the most engaging and interesting 

math tasks with value beyond the fact that they work for students of different prior 

achievement levels…Such teaching, though demanding, is also extremely fulfilling for 

teachers, especially when they see students who lack confidence and were previously low-

achieving take off and soar [3] (p 115). 

Some students will be ready and eager to roll the task right up onto the stage of Precision; others who 

might not yet have the right analytical tools can still play and wonder on the stage of Romance.  

Indeed “wonder” is a magical word and Sinclair and Watson [18] have a marvelous book review in 

which they play with its two shades of meaning. In terms of the student’s future, it is worth observing 

that few of them will ever need to complete a square or simplify log(3𝑦𝑒2𝑥). But they will often need 

to arrive at an understanding of the workings of a complex structure, perhaps every time they change 

jobs. If we can keep that firmly in mind in our assessment of the value of an activity, that might help 

to expand our viewpoint.   

The curriculum. Papert comments that “it is possible for children to do creative mathematics 

(that is to say: to do mathematics) at all stages of their scholastic lives… but a great deal of creative 

mathematical work by adult mathematicians is necessary to make it possible. [11] (p. 250).  That 

creative work is the construction of a collection of activities that engage the students in the process 

of doing mathematics, that is, in grappling with the structure of a complex system with interacting 

parts. A curriculum based on the investigation of such structures is a different kind of curriculum 

than the one we currently have; it has a different methods and different objectives; indeed it has a 

different structure. Moving to such a curriculum is a huge step and I don’t see it happening at the 

secondary level until a good body of activities has been fashioned and played with in the classroom. 

And where are we to look to find these activities?––to mathematics of course, to the structures that 

mathematicians work with, and many of these will be found in the tertiary classroom and can be 

adapted to work at the secondary level.  

An example from my linear algebra course is our study of the Hamming error-correction code. 

The heart of that two-week unit is the isomorphism between the code and the wonderful “hat 

game,” first brought to my attention by the remarkable Richard Hoshino. The winning strategy for 

that game is available to anyone who understands the coding algorithm. For example consider the 

15-hat game. I call for 15 volunteers from the class to sit around a table and I put hats on each of 

them, red or blue determined in each case by the flip of a coin. They can all see the colour of the 
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other 14 hats but not their own. Each player is given a piece of paper on which they are to write 

either RED or BLUE or PASS. The team wins as a whole if at least one person writes the colour of 

her hat, and no one writes the wrong colour. PASS does not count either way. The team can of course 

get together beforehand and decide on a strategy. The amazing result is that the strategy derived 

from the coding algorithm will win with probability 15/16. One reason this result is so surprising it 

is clearly the case that every time a colour is written on the paper it will be wrong 50% of the time. 

[An accessible example is the 3-hat game––students can find a strategy that wins 3/4 of the time.]  

The point is that while the interaction between the hat game and error-correcting codes can be 

analyzed working with the structures of linear algebra, it can also be understood in a more 

elementary way, in this case using binary arithmetic––perfect for the senior secondary level. Even 

with that, the structure is sophisticated and requires considerable play. But when you “get it,” it 

snaps into place and you have this wonderful feeling––I understand!  

Summing up 

I want the school mathematics to give its students a whole mathematical experience.  Not only is 

such a curriculum “true to the nature of the discipline” [3] (pp. 22-23), it also responds to the needs 

of the student both now and in the future. In their student lives, they need beauty and wholeness as 

much as anything else, and in their future lives they need the experience of coming to grips with 

sophisticated structures of different kinds.   

But such a curriculum really is a complete rebuild and its challenges are substantial. We need 

writers with an artistic core who have mathematical and pedagogical skills ; we need teachers who 

are prepared to reimagine what it means to be a classroom mathematics teacher and are willing to 

spend time workshopping promising activities, and we need students who are “game” to embark 

on mathematical play.  

Such changes at the secondary level would have profound implications before and after. At the 

elementary level there is a rapidly developing body of work providing and supporting creative 

tasks for children that engage them in play and develop their mathematical thinking. In some way 

things are more relaxed at this level as students are farther away from the urgency to prepare for 

tertiary mathematics. The main concern here appears to be the knowledge and experience of many 

of the teachers and there are calls for better training and resources, for example to help teachers 

understand the importance of structured play [19]. At the tertiary level significant changes are 

needed as well [2]. Instructors will need to understand that their students have some real experience 

with mathematical play but will need more time in which to do it.  

What, then, of the myth? Other than in the classrooms of exceptional teachers (and I am so 

fortunate to have worked with a number of these), the mathematics we find in today’s schools is 

narrow and technical, entirely legitimate offspring of the curriculum documents and standard 

textbooks. This is far from the character of the discipline itself, and bears little resemblance to the 

activity of mathematics. Mathematics is different from other disciplines in the precision of its 

language and the consequent possibility of a complete understanding of its ideas. But that in no way 

requires a fragmented learning experience at the school level; indeed young students are naturally 

holistic as learners and need rich (Romantic) experiences to propel them onto the stage of Precision. 

It is particularly important that school nurture them along this path. 

Last week I brought a recently developed unit [21] into a 2-hour grade 11/12 class. The objective 

was to understand why we have 12 notes in an octave, indeed, what remarkable property of the 

number 12 is at play here (why not 10 or 15?). We ranged over a broad array of activities, involving 

frequencies, harmonies, and the nature of perception––for example, how good are we at 

distinguishing notes of slightly different frequencies? The answer is that we are amazingly good. 

Indeed, using a tone generator the students discovered that the brain has the power to distinguish 

between an eardrum vibrating at 2000 oscillations per second and one with a vibration of 2010. The 

more you think about that the more extraordinary it seems to be. That’s experience. That’s Life! Our 

students are hungry for it.   
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